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The Origin and Evolution of the 
Woolly Mammoth 

Adrian M. Lister1* and Andrei V. Sher2 

The mammoth lineage provides an example of rapid adaptive evolution in 
response t o  the changing environments of the Pleistocene. Using well-dated 
samples f rom across the mammoth's Eurasian range, we document geo- 
graphical and chronological variation in  adaptive morphology. This work 
illustrates an incremental (if mosaic) evolutionary sequence but  also reveals 
a complex interplay of local morphological innovation, migration, and ex- 
tirpation in  the origin and evolution o f  a mammalian species. In particular, 
northeastern Siberia is identified as an area o f  successive allopatric inno- 
vations that  apparently spread t o  Europe, where they contributed t o  a 
complex pattern of stasis, replacement, and transformation. 

Testing among models of species-level evo- 
lution in the fossil record ideally requires 
abundant samples that are finely stratified, 
accurately dated. and correlated across a 
broad geographical area (1). Most previous 
studies of fossil mammals have lacked the 
resolution to identify lineage splitting in con- 
trast to phyletic change, nor have they offered 
sufficient geographical spread to distinguish 
in situ transformation from immigration (2, 
3). Among large mammals, the mammoth 
lineage has one of the most complete records 
as well as pronounced adaptive morphologi- 
cal evolution through a time of well-studied 
environmental change. It also allows us to 
address the issue of geographical variation by 
sampling correlated sequences in both the 
European and Siberian parts of the mam-
moth's Eurasian range. 

European mammoths (Mammuthus) have 
conventionally been divided into three chro- 
nospecies: the Early Pleistocene M, meridi-
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o ~ vand Evolution, Russian Academy of Sciences, 
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onallr [recorded about 2 6 to 0 7 rnllllon 
years ago (Ma)], the early M~ddle Ple~stocene 
M trogontherzl ( -0  7 to 0 5 Ma), and the 
woolly mammoth M p ~ z n ~ ~ g e n z ~ r ~of the l ~ t e  
Middle and Late Pleistocene (-0 15 to O O i  
Ma) Important changes through thls \t' 

quence Include shortening and helghtenlng ot 
the cranium and mand~ble, Increase in the 
helght of the molar crown (hypsodonty), in- 
crease In the number of enamel bdntls 
(plates) In the molars and thinnlng of the 
enamel (4-ti) (Flg 1 )  The dental changes 
resulted In increased resistance to abraslon 
which IS believed to correlate with a chift 
from woodland browsing to grazing In the 
open grassy habitats of the Ple~stocene 

Cr~ticalto our study is the select~on of sam- 
ples that are chronologically restr~cted and in- 
dependently dated (7) Datlng methods for 
source deposlts include radiometrq (c g K Xr 
or "C), electron spln resonance thern~oluinl- 
nescence, paleomagnet~sm, ammo acid eplmer 
izat~on, first- and last-appearance datum of ma- 
rine microfossils, and associated mammalian 
fauna. Samples from -500.000 years ago (500 
ka) onward can be tentatively correlated \+'ith 
marine isotope stages (MIS) (8) .  

The variable most frequently used in tracing 
elephantid evolution is lamellar frequent? of 
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the molar teeth (LF), defmed as the number of 
enamel plates in a 10-cm length of crown (4). 
Fourteen European samples are plotted in Fig. 
2, spanning -2.6 Ma to 25 ka, and show a 
largely directional trend: Rank correlation 
against time is highly sigmficant (P < 0.001) 
(9). This is of adaptive significance, as lamellar 
spacing is critical to elephant dental function 
(4).~owever ,  the apparently gradualistic se-
quence is somewhat misleading, because LF 
can be raised not only by an evolutionay in- 
crease in the number of plates in the crown, but 
also by a simple reduction in size: Isometrically 
smaller teeth with identical plate counts have 
more closely spaced plates (10). Because mam- 
moth size varied through the Pleistocene (6,  
lo), this could be responsible in part for the LF 
trend. 

We have therefore plotted the raw number 
of plates (P) in complete third molars (Fig. 3A) 
(11). A second, independent variable, the hyp- 
sodonty index (HI), is plotted for third upper 
molars in Fig. 3B (12); this character is linked 
to important concomitant changes in skull ar- 
chitecture (deepening of cranium and mandi- 
ble). The earliest known mammoths, M. sub-
planifrons from southern and eastern Ahca  
(-4 Ma), with very low plate number (P = 7 to 
9 only) and shallow crown (HI = -0.6 to 0.9), 
are the most primitive sample. 

The oldest European population is based 
on a combined sample from Britain (Red 
Crag), Italy (Montopoli), and Romania (Cer- 
natesti), all around 2.6 Ma. Hypsodonty is 
already at typical M. meridionalis level, but 
plate number shows a transitional condition 
from the African progenitor, with only 9 to 11 
plates in third molars. 

Typical M. meridionalis morphology (P = 

12 to 14, with outliers at 11 and 15, and mean 
HI = -1.2) is achieved by -2.4 to 2.2 Ma 

W enamel 

cover cement 

Fig. 1. Diagram of a mammoth molar, in occlu- 
sal and lateral views, showing measurements 
taken. W-W, width; L-L, length; H-H, height (4, 
7 7, 72). 

(Khapry), and P remains in stasis for around a ing it to the maximum level of the lineage, a 
million years, through -1.8 Ma (Upper Val- further example of mosaic change. 
darno, the type area of the species) to Pietrafitta Mammoth samples postdating the An-
(- 1.4 Ma). glianiElsterian glaciation in Europe (-450 

Around 1.0 Ma, some samples show little ka, probably MIS 12) have often been regard- 
change (13) or slight advancement in P to a ed as early forms of woolly mammoth M. 
range of 13 to 15 [e.g., St-Prest, France (Fig. primigenius on the basis of increased LF 
3)]. However, an east European sample from relative to M. trogontherii (19, 20). However, 
the Taman' Peninsula, Azov Sea, codified as the change in this variable is misleading and 
the "advanced form" M. meridionalis tama- masks underlying stasis. The rising LF trend 
nensis (14), shows enhanced variability in (Fig. 2) from Mosbach (-500 ka) through 
the direction of M. trogontherii and has been Steinheim (-350 ka) to Ilford (-200 ka) is 
posited as a key "intermediate" between the due entirely to compression of the molar 
two species. But although this sample as a plates resulting from the size reduction expe- 
whole is intermediate in both P and HI be- rienced by mammoths through this part of the 
tween the type M. meridionalis and M. tro- sequence (6, 10). Plate number itself, the true 
gontherii, it has a rather broad morphological indicator of evolutionary level, remained in 
range (P = 14 to 19, HI = 1.3 to 1.8), and the stasis at the "M. trogontherii" level through 
distribution of these characters is bimodal the interval 600 to 200 ka (Fig. 3A). Other 
(Fig. 3) (IS), unexpected for a simple anage- dated European samples that we have mea- 
netic intermediate. sured-such as Ariendorf, Germany (-300 

At around 700 ka, two smaller samples, to 150 ka), Tourville la Riviere, France 
from Voigtstedt, Germany [M. meridionalis (-230 ka), and several MIS 7 sites such as 
voigtstedtensis (16)], and West Runton, En- Stanton Harcourt, England, and Ehringsdorf, 
gland (type Cromerian plus adjacent late Germany (-200 ka)-corroborate the late 
Beestonian gravels), are of very similar age persistence of M. trogontherii morphology 
(17). They include molars at full M. tro- (21). 
gontherii level ( P  = 19 to 22, HI = 1.6 to Moreover, there is evidence that the end 
1.9), but also specimens showing persistent of this interval is marked by the simultaneous 
"advanced M, meridionalis" morphology in occurrence in Europe of mammoths of M. 
one or more characters (Fig. 3) (18) .P and trogontherii and M. primigenius morphology. 
HI are only partly congruent at Taman' and The sample from Marsworth, UK, of late 
Voigtstedt: Some specimens are of "mosa- MIS 7 or early MIS 6 age (- 190 to 150 ka) 
ic" morphology (low P, high HI), whereas a was carefully collected from a single horizon. 
few others show "intermediate" values It shows a wide spread of P values with an 
(P = 16, HI = 1.5) between typical M. apparently bimodal distribution, the two 
meridionalis and M. trogontherii (Fig. 3). modes closely corresponding in morphology 

By -600 ka, only M. trogontherii oc- to the immediately preceding (M. trogonthe-
curred in Europe, as at Sussenborn, the type rii) and succeeding (M. primigenius) popula-
locality of the species. The sample from Mos- tions. A similar distribution of P values (18 to 
bach (-500 ka, probably MIS 13) is equiva- 24) is seen in a smaller sample from another 
lent to Sussenborn in plate number, but site, Brundon (Suffolk, UK), of late MIS 7 
shows an increase in mean HI to -2.0, bring- age (22). 

Years Fig. 2. Lamellar fre- 
ka quency of third upper 

Predmosti + (27) molars in European 
Bcllderton (23) mammoths, plotted+ + I IWord(l1) against Linear time.+ + 

1 Steinhelm (21) Mean i 1 standard
Mosbach(18 
Sussenborn ($3) error shown. For 
Voigt. (4). W. Runton (3) West Runton, only 

"trogontherii" speci-
St-Prest (131, Taman' (211 mens, omit t ing the 

"meridionalis" molar 

I Pietrafitta (6) at  P = 15 (see Fig. 
3A), are included. 
Sample sizes are in 

Valdarno (331 brackets. 

Khapty (81 

+ ~ e d i r a g + ~ .  

4 5 6 7 8 9 1 0 

Lamellar Frequency 
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In keeping with this timing for the transi- 
t~on .  several samples from MIS 6 (-190 to 
1-30 ka) represent the earliest sole occurrence 
of M. pt.iinigrni~rs,fully derived in all char- 
acters, in Europe (23). These include La 
Cotte. Jersey, Channel Islands (UK): Tatter-
shall Thorpe. Lincolnshire. England: Zemst 
Ilb. Flemish Valley, Belgium: and Balderton, 
Nott~nghamshire, England. the latter plotted 
i l l  Figs. 2 and 3. Similar mean values for all 

variables persist in almost all European sam- 
ples from the "last cold stage" (MIS 4-2) 
(Figs. 2 and 3). Many of these latest samples 
do, however, show a marked degree of intra- 
population morphological spread (Fig. 3) .  in-
cluding specimens reminiscent of M. tro-
gontherii in P values (24). 

Our Siberian sequence shows morpholog- 
ical transitions similar to those in Europe, but 
persistently ahead of Europe in the timing of 

Years 

successive morphologies. Our samples are all 
from northeastern Siberia, between the Lena 
and Kolyma River valleys: the earliest. from 
the Early Olyorian. spans 1.2 to 0.8 Ma. From 
this date or earlier, mammoths In northeast- 
e m  Siberia were living in an herb- and grass- 
dominated environment under permafrost 
conditions (25).The Early Olyorian sample is 
approximately equivalent to the European 
Taman' sample in age but is more derived In 
plate count, whereas in hypsodonty it corre- 
sponds only to the "advanced" mode at Ta- 
man' (Fig. 3) Except in a smaller slze of 
teeth, the Early Olyorian sample 1s barely 
distinguishable from M. trogontherri, which 
does not appear in Europe until -700 ka. 

By the Late Olyorian (-800 to 600 ka). 
mammoths in Siberia approached 51'. primi-
genius morphology in all characters. antici- 
pating the European sequence by several hun- 
dred thousand years: by the Late Pleistocene 
(- 150 to 10 ka), Siberian mammoths exceed- 
ed European values in mean plate number 
(although not in hypsodonty) (Fig. 3). with 
"relict" M,frogontherii morphology much 
rarer than in Europe 

In sum, the pattern of change in Europe. 
although incremental on a broad time scale. 
includes substantial intervals of stasis and- 
at the two intervals of important transition--- 
bimodality, which suggests more complex 
populational or cladogenetic processes. In 
keeping with this pattern, the early develop- 
ment in northeastern Siberia of advanced 
mammoths similar to later European !\I. t t ~ -
gonfherii suggests the origin of this morphol- 
ogy in northeastern Siberia (presumably from 
an eastern IM.i~irriiliot~alispopulation). fol- 
lowed by its later dispersal to the south and 
west, where it eventually superseded the in- 
digenous M. meridionalis morpholog) . Prc-
vious authors have questioned the simple de-
scent of .&I. frogorrtherii from !LI' tni>i.id~oi~uiis 
in Europe (26) or have suggested the occur- 
rence of two forms of mammoth there in the 
interval -1.0 to 0.8 Ma (13), but the source 
of the more advanced form was not known. It 
may be significant that the earliest detected 

trogontherii morphology in Europe is at 
the eastern fringes of the continent ( Talnan'), 
whereas penecontemporaneous svniples in 
western Europe (e.g., St-Prest) remained at a 
primitive M. ineridiona1i.r level. 

However. the complex~ty of variation in 
Europe between 1.0 and 0.5 Ma. with incre- 
mental morphological advancement and mo- -
salt or specimens u ~ t h ~ n~ntermed~ate the 
san~ples. suggests that Earl) Olyonan llnrnl- 
grants were not completely reproducti\el) 
Isolated from the contemporary European 
population. but recel\ed some genetic Input 
from it through this per~od (27) .T h ~ sis con-
sistent with the fact that XI rr.ogontl~et.zidt 

West Runton and even Siissenborn are itill 
slightly more "prirniti~e" than the ancestral 

Plate Count 

Fig. 3. (A) Plate count (P) of third upper plus lower molars; (B) hypsodonty index (HI) of third upper 
molars in the mammoth lineage. Open bars: European samples (shaded, Voigtstedt): filled bars and 
italic nameslages: northeastern Siberian samples; cross-hatched bars, African sample. Solid vertical 
lines connect sample names of equivalent age. Dotted lines traverse groups of samples (or 
subsamples, in the case of Taman' HI and West Runton and Marsworth P) at  similar evolutionary 
level. Asterisks indicate conventional significance levels (two-tailed t tests; *P = 0.05, **P = 0.01, 
* * * P  - =  0.001) between successive, whole European samples only (i.e., bimodal samples are treated 
as a whole, and Siberian samples are ignored): P to the left of the central gutter, HI to the right. 
HI of M. subplanifrons is shown as mean i 1 standard error and 1 standard deviation, from (4). 
Sample sizes ( P ,  HI) in brackets are after site names. 
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Early Olyorian population in features such as 
mean plate number (Fig. 3A) and enamel 
thickness (28). 

In the second part of the sequence, compris- 
ing the shift from M. trogontherii to M. primi-
genius (-500 to 200 ka), our reappraisal of the 
European sequence suggests that a transition 
formerly assumed to be "gradualistic" in fact 
entails stasis followed by apparent sympatry and 
then replacement, a conclusion strengthened by 
the absence of a transitional population in Eu- 
rope. Previous suggestions of differently adapt- 
ed mammoth populations in Europe from 200 to 
100 ka (29, 30) have been based on remains 
from a variety of deposits, and so could not 
distinguish between cladogenesis (implied by 
sympatry) and rapid anagenesis between popu- 
lations of slightly differing ages. Moreover, the 
fossil sequence in northeastern Siberia demon- 
strates, as early as the Late Olyorian (-800 to 
600 ka) and certainly by the late Middle Pleis- 
tocene (-500 to 200 ka), mammoths essentially 
indistinguishable from later European M. primi-
genius. This invites the hypothesis that the tran-
sition between the two chronospecies occurred 
in Siberia, with M. primigenius morphology 
later spreading to Europe. 

In this transition as in the earlier one, a 
modified hypothesis to strict allopatric replace- 
ment would be partial introgression from the 
European to the incoming Siberian population 
(27). The persistence of some trogontherii-like 
variation within Late Pleistocene European M. 
primigenius is likely to be the heritage of an 
incomplete genetic barrier between the two 
species in the Middle Pleistocene, which, in 
view of the apparent isolation of the two 
forms at Marsworth, implies complex and 
variable degrees of isolation within a met- 
apopulation around the time of speciation. In 
accordance with our model, the rarity of relict 
M. trogontherii morphology in Late Pleisto- 
cene Siberia reflects its phyletic transfoxma- 
tion into M. primigenius there, in contrast to 
Europe, where both forms may have contrib- 
uted to later populations. 

This study shows that substantial evolution- 
ary transformation can be effected through a 
sequence of intermediate morphologies over 
several hundred thousand to a few million 
years-in this sense "gradual," or better, incre- 
mental (31). It is also clear that different char- 
acters change at different times: "mosaic" evo-
lution or, in phylogenetic terms, the order of 
building of the character complex. In Europe, P 
increases in several significant steps spread 
across the interval 2.6 to 0.15 Ma, whereas HI 
undergoes its major change in two bursts be- 
tween 1.0 and 0.5 Ma (Fig. 3). 

The incremental, directional change ob-
served both in Europe and in Siberia might be 
accounted for by separate anagenesis, conver- 
gent between the two regions. However, from a 
cladistic perspective, it is more parsimonious to 
regard the shared dental and cranial features of 

Olyorian and European mammoths as evidence 
of phylogenetic links in the origin both of M. 
trogontherii and of M. primigenius, and this is 
supported by the patterning among samples in 
time and space. The earlier origin of M. tro-
gontherii and M. primigenius morphologies in 
Siberia. and the enhanced variation or bimodal- 
ity in Europe around the times of transition, are 
consistent with a critical input from outside, 
whether by simple replacement or (more likely) 
by more complex metapopulation processes in- 
cluding hybridization. The pattern of stasis and 
change in Europe shares elements with a 
"punctuated equilibrium" pattern of evolution 
(1-3). However, species origins in this exam- 
ple are not as clear-cut as in classic allopatric 
models, but apparently proceeded through the 
differential development of partially isolated 
populations. 

Finally, our data should allow testing of 
correlations between the pattern of evolutionary 
change and the shifting paleoenvironments of 
the Pleistocene. For the moment, we note that 
the early initiation and persistent advancement 
of grazing adaptations in Siberian mammoths, 
compared to those in Europe, was very likely 
linked to the earlier advent and greater severity 
and continuity of periglacial conditions in that 
region (32). Siberia thereby provided a continu- 
ing source of grazing-adapted mammoths, 
which we suggest acted as a repeated source of 
evolutionary advancement into periodically gla- 
ciated Europe. 
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