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Oscillations in Phanerozoic 
Seawater Chemistry: Evidence 

from Fluid Inclusions 
Tim K. Lowenstein,'* Michael N. Timofeeff,' Sean T. Brennan,'  

Lawrence A. Hardie,' Robert V. ~emicco'  

Systematic changes in the chemistry of evaporated seawater contained in 
primary fluid inclusions in marine halites indicate that seawater chemistry has 
fluctuated during the Phanerozoic. The fluctuations are in phase with oscilla- 
tions in seafloor spreading rates, volcanism, global sea level, and the primary 
mineralogies of marine limestones and evaporites. The data suggest that sea- 
water had high Mg2+/Ca2' ratios (>2.5) and relatively high Na+ concentra- 
tions during the Late Precambrian [544 to 543 million years ago (Ma)], Permian 
(258 to 251 Ma), and Tertiary through the present (40 to 0 Ma), when aragonite 
and MgSO, salts were the dominant marine precipitates. Conversely, seawater 
had low Mg2+/Ca2+ ratios (<2.3) and relatively low NaL concentrations during 
the Cambrian (540 to 520 Ma), Silurian (440 to 418 Ma), and Cretaceous (124 
to 94 Ma), when calcite was the dominant nonskeletal carbonate and K-, Mg-, 
and Ca-bearing chloride salts, were the only potash evaporites. 

The long-held consensus that the major-ion "chevron" crystals formed by primary precipi- 
chemistry (Na', K', Ca2+, Mg2+, Cl-, SO,'-, tation on the floor of an evaporating brine body 
HCO,-) of the global ocean has remained close (5) .  These chevron crystals contain bands of 
to its present-day composition during the Pha- primary fluid inclusions parallel to the crystal 
nerozoic (1)(-540 Ma to the present) is at odds growth faces. indicating that the inclusions hold 
with the record of secular changes in the pri- trapped surface brines. Individual fluid inclu- 
mary mineralogy of marine limestones and sions in chevron halite are difficult to analyze by 
evaporites. During the Phanerozoic, the primary extraction techniques because of their dense 
mineralogy of nonskeletal limestones has twice packing and small size. This problem was over- 
oscillated between calcite and aragonite seas come by using a scanning electron microscope 
(2).while over the same interval of 540 million (SEM) coupled to an x-ray energy-dispersive 
years (My), late-stage salts in marine evaporites system (EDS) to directly analyze the major ions 
have fluctuated between the KC1 and MgSO, in frozen fluid inclusions as small as 30 Frn ( 6 ). 

types, in step with the calcite-aragonite oscilla- An improved SEM-EDS approach using an en- 
tions (3).Current hypotheses for these 100- to vironmental SEM (ESEM-EDS) allows direct 
200-My cycles in limestone and evaporite min- observation and analysis of the surface of frozen 
eralogies involve secular variation in the major- fluid inclusions (7 ) .  Here, we present new 
ion chemistry of seawater produced by changes ESEM-EDS analyses of fluid inclusions from 
in mid-ocean ridge hydrothermal brine fluxes Late Precambrian. Cambrian, Silurian, Permian. 
driven by oscillations in seafloor spreading Cretaceous, and modem halites ((7). Our data are 
rates (3) ,as well as seawater-driven dolomiti- from chevron halites that appear petrographical- 
zation (4 ). Here. we evaluate secular changes in ly to be primary (i.e., unrecrystallized). We sup- 
seawater chemistry in the Phanerozoic through plemented our data with published Permian (9. 
analysis of fluid inclusions. 10) and Tertiary (11) fluid inclusion analyses. 

Bedded halite from marine evaporites as old Fluid inclusions from halites (Fig. 1) trace 
as the Late Precambrian contains preserved  out paths on Mg2- and Nat  versus CI plots 

that reflect changes in brine composition con- 
sistent with progressive evaporative concentra- 
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overlap the modem seawater evaporation 
curves or present-day fluid inclusions (Fig. 1). 
We interpretthis to indicate that ancient seawa-
ter differed chemically frompresent-day seawa-
ter. Ancient fluid inclusion chemistries and pa-
leoevaporation paths form two distinct wmpo-
sitional groups: a Late Precambrian and Per-
mian group, which is closest to modem 
seawater chemistry, and a Cambrian, Silurian, 
and Cretaceous group, which plots furthest 
from modem seawater evaporation paths. The 
Na+ versus Cl- plot shows that ancient fluid 
inclusions had lower Na+ concentrations and 
higher Cl- concentrations during halite precip-
itation than in present-day halite-saturated sea-
water brines. The M$+ versus Cl- plot shows 
that paleoseawaters were depleted in M$+ rel-
ative to present-day evaporated seawater, with 
Late Precambrian and Permian fluid inclusions 
closest to modem concentrations. 

The M$+/Ca2+ molar ratio of paleoseawa-
ter estimated from fluid inclusions in halite 
spanning the Phanerozoic shows systematic 
long-term (100 to 200 My) oscillations (Fig. 2). 
Cambrian, Silurian, and Cretaceous paleosea-
waters had maximum M$+/Ca2+ ratios of 2.3 
and ranges between 1.0 and 2.3, well below the 
modem seawater M$+/Ca2+ ratio of 5.2 (12). 
M$+/Ca2+ ratios in Late Precambrian, Per-
mian, and Tertiary seawater were decidedly 
higher, always 32.5 and at times >4 (13). 
Variations in the M$+/Ca2+ ratio of seawater 
are synchronous with variations in Na+ and 
M$+. Geological periods during which seawa-
ter had high (>2) M$+/Ca2+ ratios (Late Pre-
cambrian,Permian, and Tertiary)coincidedwith 
times of relatively elevated M$+ and Na+ con-
centrations, and they correspond to periods 
when aragonite and MgSO, salts were impor-
tant marine precipitates (Fig. 2). The high 
M$+/Ca2+ ratio of seawater was probably re-
sponsible for the precipitation of aragonite dur-
ing those times, in accord with field and exper-
imental evidence that aragonite is the favored 
carbonateto precipitate fromwaters with M$+/ 
Ca2+ratios > -2 (3, 14). MgS0,-bearing salts 
such as polyhalite,kainite, and kieserite occur in 
Permian and Tertiary evaporites. During these 
periods, seawater fell on the SO:--rich side of 
the Ca-SO, chemical divide (13), and Ca2+-
depleted, S042--richbrines were produced after 
precipitation of CaCO, and CaSO,. In contrast, 
seawater with low M$+/Ca2+ ratios (<2.3 in 
the Cambrian, Silurian, and Cretaceous) coin-
cided with times when seawater was relatively 
depleted in Na+ and M$+. Calcite was the 
dominant nonskeletal carbonate of these peri-
ods, which is consistent with observations that 
low-Mg calcite is the favored carbonate to pre-
cipitate from waters with M$+/Ca2+ ratios 
<-2. Cambrian, Silurian, and Cretaceous 
evaporites lack MgSO, minerals and instead 
contain late-stageK-, Mg-, and Ca-bearing chlo-
ride salts. Seawater of these ages must have had 
relatively elevated Ca2+with mold (m) concen-

R E P O R T S  

trations of mCa2+ > mSO,> + '/2rnHC03, 
which ensuredthat Ca2+would become a major 
brine component, and SO:- a minor brine wm-
ponent, after evaporation and precipitation of 
CaSO,. 

The fluid inclusion data (Figs. 1 and 2) 
provide evidence for oscillations in the major-
ion chemistry of seawater over the Phanerozoic. 
The oscillations in seawater composition are of 
the kinds predicted by a seawater secular varia-
tion model (3), which proposes that secular 
changes in seawater chemistry are produced by 
changes in the mid-ocean ridgelriver water flux 

ratio driven by changes in ocean crust produc-
tion (15). The data are also in good agreement 
with the timing of aragonite and calcite seas and 
with the observed occurrences of MgS0,-rich 
versus KC1-rich potash evaporites back at least 
to the Late Precambrian. During geologic peri-
ods with high mid-ocean ridge activity and high 
sea levels (Cambrian, Silurian, and Cretaceous), 
substantial changes in the chemistry of seawater 
are predicted, even the crossing of the Ca-SO, 
chemical divide. Seawaters from those periods, 
with mCa2+ > mSOf + '/ImHCO, would 
have evolved after evaporationand precipitation 

A Late Cretaceous 
Early Cretaceous 

x Permian 

0 Silurian 

+ Cambrian- Precambrian 

CI (mmolkg H20) 

4 Modern 
A Late Cretaceous 

Early Cretaceous 
x Permian 
0 Silurian 
+ Cambrian- Precambrian-Seawater Eva~oration 

CI (mmolkg H,O) 

Fig. 1.Concentrationsof Na+ (A) and Mg2+ (B) versus CI- in primary fluid inclusions from marine 
halites (8), analyzed by ESEM-EDS. Permian fluid inclusions analyzed by extraction-ion chroma-
tography (9)and extraction-microtitration (10) are also plotted. Solid curves track the composi-
tional paths for evaporation of modern seawater calculated by the HMW computer program (18). 
Evaporation paths are functions of the major-ion chemistry of the parent water, the extent of 
evaporation, and the type and amount of salts precipitated. Fluid inclusions from present-day 
marine halites overlap the modern seawaterevaporation paths, indicatingthat fluid inclusions from 
modern halites contain unaltered evaporated seawater brines (19). The drop in Na+ and increase 
of Mg2+ on the modern seawater evaporation curves at -6000 mmol of CI- reflect precipitation 
of halite and loss of Na+ and Cl- from the evaporatingbrines. Na+ and CI- molalities from all fluid 
inclusions were adjusted using the HMW computer model assuming halite saturation. 
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Fig. 2. Secular variation in the Mg2+/Ca2+ ratio of seawater during the Phanerozoic, estimated 
from fluid inclusions in marine halites (vertical bars) (12, 13) compared to predicted seawater 
secular variations (3). The horizontal line at Mg2+/Ca2+ = 2 is the approximate divide between 
calcite seas (Mg2+/Ca2+ C 2) and aragonite seas (Mg2+/Ca2+ + 2) (3, 17). Also plotted are the 
temporal distributions in the primary mineralogies of Phanerozoic nonskeletal carbonates (2) and 
KC1 and MgSO, evaporites (3). 

of CaSO, into the Caz+-rich SO,z--depleted 
fluid inclusions reported here. In this regard, it is 
likely that the overall slowdown in seafloor 
spreading rates since the Cretaceous maximum 
ultimately led to a present-day seawater chem- 
istry at the other chemical extreme, enriched in 
SO4'-, M$+, and Na+ and depleted in CaZ+. 

We interpret these data to indicate that the 
major-ion chemistry of seawater has systemati- 
cally changed over the last 540 My. However, 
others have suggested that any such signal may 
be obscured by basinal- or global-scale dolo- 
mitization of flooded carbonate platforms, 
which altered the M$+/CaZ+ ratio of the evap- 
orating brines, yielding seawater enriched in 
Ca2+ and depleted in M$+ (4). If basinal-scale 
contemporaneous dolomitization were to have 
altered seawater chemistry before evaporative 
concentration, then we would not expect over- 
lapping fluid inclusion chemistries in samples 
taken from geographically separated evaporite 
basins of about the same age (Fig. 1). It is 
noteworthy that fluid inclusions analyzed from 
the Silurian, Permian, and Cretaceous came 
from geographically separate areas (8). Such 
overlaps indicate a common "global" seawater 
parent of that period. Global-scale dolomitiza- 
tion during periods of elevated sea level (e.g., 

duced by contemporaneous dolomitization of 
marine limestones, but that changes in the 
chemistry of evaporating seawater produced by 
these processes were not large enough to over- 
ride the basic seawater signal. 

Long-term changes in seafloor spreading 
rates, global sea level, and "greenhouse" versus 
"icehouse" conditions are synchronous during 
the Phanerozoic because they are all driven by 
plate tectonics, as pointed out in 1982 (16). To 
this list we would add oscillations in global 
seawater chemistry recorded in the minerals 
(and their fluid inclusions) of marine evaporites 
and nonskeletal limestones. Changes in the ma- 
jor-element chemistry of ancient seawater may 
also have influenced the mineralogy and abun- 
dance of the dominant biocalcifying organisms 
in the past. This is suggested by the concurrence 
of the carbonate mineralogy (aragonite versus 
calcite) of many "dominant" reef builders and 
sediment-producing organisms (17) with the 
fluctuations in the chemistry of seawater report- 
ed here. 
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