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Colliculus Involved in Magnetic 


Orientation in a Mammal 
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The neural substrate subserving magnetic orientation is largely unknown in 
vertebrates and unstudied in mammals. We combined a behavioral test for 
magnetic compass orientation in mole rats and immunocytochemical visual- 
ization of the transcription factor c-Fos as a marker of neuronal activity. We 
found that the superior colliculus of the Zambian mole rat (Cryptomys anselli) 
contains neurons that are responsive to magnetic stimuli. These neurons are 
directionally selective and organized within a discrete sublayer. Our results 
constitute evidence for the involvement of a specific mammalian brain struc- 
ture in magnetoreception. 

Behavioral studies have provided abundant 
evidence for magnetic compass orientation 
among vertebrates, but its sensory and neu- 
ral basis remains enigmatic (1, 2). A few 
electrophysiological studies have addressed 
the involvement of a specific brain struc- 
ture in the processing of magnetic informa- 
tion (3-9). This method, however, has a 
particular drawback: It does not allow sys- 
tematic screening of neuronal activities in 
the central nervous system. Therefore, 
well-aimed electrophysiological studies 
cannot be conducted in the absence of a 
known receptor site. Here, we investigated 
magnetoreception by combining two estab- 
lished methodological approaches: a behav- 
ioral test designed to assess magnetic com- 
pass orientation in mole rats (10, 11) and 
immunocytochemical visualization of the 
transcriptional regulatory protein c-Fos as a 
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marker of neuronal activity, a neuroana-
tomical technique used extensively in sen- 
sory research (12-14). 

We detected the evoked expression of c- 
Fos in order to map neuronal activities that 
had been entrained either by active orienta- 
tion via the magnetic compass or by changes 
in the ambient magnetic field. Experimental 
animals built nests in an unfamiliar arena 
[i.e., performed a magnetically based spatial 
orientation task (IS)] under different test con- 
ditions (16). Controls (used also to assess 
basal levels of c-Fos expression) were of two 
types: (i) untreated animals freely moving 
within a familiar home area, and (ii) animals 
resting or sleeping in a shielded magnetic 
field. We focused on neuronal activities in the 
superior colliculus (SC), a prominent subcor- 
tical sensorimotor integrator that plays an 
important role in orientation to diverse stim- 
uli (I7-19). The unique intrinsic circuitry of 
the SC (20) may serve to integrate magnetic 
information with multimodal sensory and 
motor information. Magnetic stimuli thus 
may directly elicit orientation responses via 
initiation of activity in the premotor efferent 
collicular pathways. 

The SC in all of the experimental and 
control animals displayed a symmetrical 
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bilateral distribution of c-Fos immunoreac- 
tivity (21) (Fig. 1, A to F). The density and 
distribution pattern of immunoreactive 
cells, however, differed markedly between 
animals subjected to different experimental 
conditions [Figs. 1 and 2; Web figs. 1 to 3 
(22)l. In control animals resting or sleeping 
in the shielded magnetic field, basal ex- 
pression of c-Fos was very low and only a 
few randomly scattered immunoreactive 
neurons were obsewed [Fig. IF; Web fig. 
1F (22)l. In control animals active in their 
home cages, c-Fos expression always re- 
mained moderate; labeled cells were more 
numerous than in the SC of resting animals, 
but were still randomly scattered and de- 
void of any obvious pattern of alignment 
[Fig. 1E; Web fig. 1E (22)l. In contrast, the 
SC of experimental animals invariably 
showed large numbers of heavily immuno- 
stained cellular nuclei, arranged in tangen- 
tially oriented bands aligned with collicular 
layers or sublayers [Fig. 1, A to D; Web fig. 
1, A to D (22)l. 

In both the outer sublayer of the interme- 
diate gray layer (InGo) and the deep gray 
layer (DpG), the density of immunopositive 
cells was increased significantly in all exper- 
imental groups, irrespective of experimental 
conditions [Web figs. 2 and 3 (22)l. Density 
differences between experimental groups 
were, however, much less pronounced and 
mostly statistically insignificant. The distri- 
bution pattern of labeled cells was common 
to all experimental groups (Fig. 1, A to D). 
Therefore, increased neuronal activity in 

those two layers is likely an unspecific nov- 
elty response to the unfamiliar environment 
(information input from nonmagnetic sensory 
and motor systems likely accounted for the 
activation). 

In contrast, in the inner sublayer of the 
intermediate gray layer (InGi), both the 
density and distribution pattern of immuno- 
reactive cells correlated significantly with 
physical properties of the magnetic field 
(Figs. 1 and 2). This sublayer is distin- 
guished by rather irregularly distributed 
cells and by the frequent occurrence of 
large, dark multipolar neurons in Nissl- or 
Kliiver-Barrera-stained sections [Web fig. 
4 (22)l. In animals building their nests in 
the constant magnetic field, very strong but 
focal immunoreactivity was detected in the 
mediorostral part of the SC [Fig. 1A; Web 
fig. 1A (22)l. The extent of the labeling 
was about 300 to 600 pm X <I000 pm 
(rostrocaudal x mediolateral dimension). 
Tightly packed, darkly labeled neurons 
were distributed within the InGi in a patchy 
manner, forming two or three clusters. An- 
imals building their nests in the periodical- 
ly changing magnetic field exhibited com- 
paratively weaker staining [Fig. 1, B and C; 
Web fig. 1, B and C (22)l. The area of 
labeled neurons, however, was significant- 
ly larger, spanning almost completely the 
InGi throughout the rostral half of the SC 
(about 1200 pm X 2000 pm, in rostrocau- 
dal X mediolateral dimension). More wide- 
ly spaced immunopositive cells formed five 
or six clusters that were less compact and 

Fig. 1. Characteristic distribution patterns of c-Fos-immunoreactive neurons in the SC of Zambian 
mole rats subjected to different experimental conditions. (A to D) Nesting in unfamiliar circular 
arena: (A) natural (constant) magnetic field; (B and C) experimental magnetic field, the horizontal 
component of which was manipulated every 5 min (B) and every second (C); (D) shielded magnetic 
field. (E) Movement within home cage, natural magnetic field. (F) Inactivity, shielded magnetic field. 
Each dot represents a single labeled neuronal nucleus. 

consisted of a smaller number of labeled 
cells. Finally, in animals building their 
nests in the shielded magnetic field, only a 
few scattered immunoreactive cells were 
found in the InGi [Fig. 1D; Web fig. 1D 
(241. 

Neuronal activation within the InGi was 
related to the presence of a perceptible 
magnetic field of about the strength of 
Earth's field. Changes in the polarity of the 
magnetic field led to the activation of in- 
creasing numbers of collicular compart- 
ments, but activation within individual 
compartments was less pronounced, as in- 
dicated by both lower intensity of immuno- 
staining and lower density of immunoreac- 
tive cells. 

Because mole rats use a polarity com- 
pass for orientation (lo), one would expect 
that the change of field polarity stimulates 
their magnetosensory system. We therefore 
expected increases in c-Fos expression pro- 
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Fig. 2. Mean numbers of c-Fos-immunoreac- 
tive (IR) neurons (tSEM) in the lnCi (30). 
Density counts are from the rostral (a), mid- 
dle (b), and caudal (c) parts of the SC; see Fig. 
1 for coding of experimental conditions A to 
E. Significant differences (P < 0.05) are indi- 
cated by stars. Solid stars indicate compari- 
son with control group E; open stars indicate 
comparison with adjacent experimental 
group on the right or with another experi- 
mental group when so indicated. Upper right 
inset shows position of individual counting 
frames; lower left inset shows approximate 
levels of counting. 
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portional to the frequency of polarity 
changes. However, this was not the case: In 
trials with changing polarity, the intensity 
of expression decreased, whereas the area 
involved expanded. We propose the follow- 
ing explanation for this phenomenon: (i) 
The presence of a magnetic field of a given 
polarity, rather than a change of polarity, 
represents a relevant stimulus; (ii) neurons 
of individual collicular compartments re- 
spond only to magnetic fields with a dis- 
tinct range of polarity; and (iii) compart- 
ments responding to different field polari- 
ties (or, under natural conditions, to differ- 
ent orientations of the animal toward the 
polarity) are distributed systematically 
within the InGi. Such an arrangement can 
account for spatial and temporal segrega- 
tion of neuronal activities when magnetic 
field polarity is periodically manipulated, 
and thus it can account for periodicity of 
excitatory influence on neurons of individ- 
ual compartments. It seems likely that, un- 
der such conditions, only smaller numbers 
of neurons per compartment could attain a 
level of activity above the threshold re-
quired for immunocytochemical detection. 
Our findings thus suggest that, as in the 
case of other sensory modalities (20), the 
magnetosensory input is also organized in a 
topographical map of external sensory 
space within the mole rat SC. Experiments 
with immobilized animals are needed to 
provide direct evidence for the existence of 
such a magnetotopic map. 

Our data show that the SC of mole rats 
contains populations of neurons that are re- 
sponsive to magnetic stimuli and that it is 
involved in the neural processing of magnetic -

information. As such, our work offers exper- 
imental evidence that a specific brain struc- 
ture serves neural processes underpinning 
magnetic compass orientation in mammals. 
Our experiments also have methodological 
implications. Detection of immediate early 
gene expression may be useful for identifying 
neurons that have been activated by magnetic 
stimuli. Such a method could be used to 
screen for neuronal activities throughout the 
central nervous system. 
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