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samples from the Polymorphism Discovery Resource 
panel (PDR90) (49). Successful assays were subse- 
quently used to analyze samples from our study. 
Genotypes were assigned automatically by cluster 
analysis (M. Olivier et  al., in preparation). Differences 
among genotypes were analyzed by one-way 
ANOVA using STATVIEW 4.1 software (Abacus Con- 
cepts. Inc., Berkeley, CA). SNPs 1 to 4 are available in 
dbSNP under accession numbers ss3199913, 
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Phosphorylation-Dependent 
Ubiquitination of Cyclin E by 
the SCFFbw7 Ubiquitin Ligase 
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Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the 
transition from the C, phase t o  the S phase of the cell cycle. The amount of 
cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated 
proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiq-
uitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, 
flies, and mammals. Fbw7 associates specifically wi th  phosphorylated cyclin E, 
and S C F ~ ~ " ~  catalyzes cyclin E ubiquitination in  vitro. Depletion of Fbw7 leads 
t o  accumulation and stabilization of cyclin E in  vivo in  human and Drosophila 
melanogaster cells. Multiple F-box proteins contribute t o  cyclin E stability in  
yeast, suggesting an overlap in  SCF E3 ligase specificity that allows combina- 
torial control of cyclin E degradation. 

Passage through the cell cycle is controlled 
by the activity of cyclin-dependent kinases 
(CDKs) (1).Cyclin E is the regulatory sub- 
unit of Cdk2 and controls the G, to S phase 
transition, which is rate-limiting for prolifer- 
ation. Cyclin E is tightly regulated by ubiq- 
uitin-mediated proteolysis, which requires 
phosphorylation on Thr380 and C d U  activa- 
tion (2-4). Failure to properly regulate cyclin 
E accumulation can lead to accelerated S 
phase entry (9,genetic instability ( 6 ) , and 
tumorigenesis (7). Elucidating the mecha- 
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nism controlling cyclin E destruction has im- 
portant implications for understanding con- 
trol of cell proliferation during development 
and its subversion by tumorigenesis. 

The formation of polyubiquitin-protein 
conjugates, which are recognized and de- 
stroyed by the 26s proteasome, involves 
three components that participate in a cascade 
of ubiquitin transfer reactions: a ubiquitin-
activating enzyme (El), a ubiquitin-conjugat- 
ing enzyme (E2), and a specificity factor (E3) 
called a ubiquitin ligase (8) .E3s control the 
specificity of target protein selection and 
therefore are key to controlling individual 
target protein abundance. 

The SCF (SkplICullinlF-box protein) com- 
prises a large family of modular E3s that con- 
trol ubiquitination of many substrates in a phos- 
phorylation-dependent manner (9). SCF com- 
plexes contain four subunits: Skpl, Cull 
(Cdc53), Rbxl, and an F-box-containing pro- 
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tein. F-box proteins, over 50 of which have 
been identified in mammals (10, II), bind Skpl 
through the F-box motif (12) and mediate sub-
strate specificityof SCF complexes by binding 
substrates through protein-protein interaction 
domains, often WD40 repeats or leucine-rich 
repeats @RRs) (13, 14). 

Several observationssuggestthat accumu-
lation of cyclin E might be controlledthrough 
the SCF pathway. Cyclin E, like many SCF 
substrates, requires phosphorylation for de-
struction, and mice lacking Cull accumulate 
cyclin E (15,16). Because Cu13 mutant mice 
also show increased amounts of cyclin E 
(17), it is not clear if the effects of either 
cullin are direct. Stability of cyclin E ex-
pressed in Saccharomycescerevisiae depends 
on phosphorylation of ThSs0, suggesting a 
conserved mechanism in yeast and mammals 
(3). Therefore, we exploited the genetics of S. 
cerevisiae to explore the contribution of SCF 

A 
l ime(min) - 0- 30 60 90 

m 

to cyclin E ubiquitination.We used a stability 
assay to perform a pulse-chase analysis of 
cyclin E protein in wild-type and skpl-11, 
cdc34-2, or cdc53-I mutants. To prevent cell 
cycle position effects, we arrested cells in S 
phase by addition of 200 mM hydroxyurea 
throughout the experiment. Cyclin E was un-
stable in wild-type cells but stabilized in SCF 
mutant cells (Fig. 1A). We examined cyclin E 
stability in yeast F-box protein mutant strains 
cdc4-I, grrl,  ydr219, yj1149, ym1088/t1fol, 
yn1230/elal, yn131I ,  and yor080/dia2. Cyclin 
E was stabilized in cdc4-1 strains to an extent 
similar to that seen with core SCF mutants 
and was also stabilized in yor080 mutants 
(Fig. 1A). Cdc4 and Yor080 contain WD40 
and LRR motifs, respectively. We incubated 
recombinant SCFCdc4and SCFY0*80 com: 
plexes with recombinant cyclin E-Cdk2, El ,  
Cdc34 (E2), Ub, and adenosine triphosphate 
(ATP) (Fig. 1B). Ubiquitination of cyclin E 

was detected with both complexes in an F-
box- and ubiquitin-dependent manner (Fig. 
1B). Ubiquitination was also stimulated by 
phosphorylated cyclin E as it was iargely 
prevented when catalytically inactive cyclin 
E-CdIdKD complexeswere used as substrate 
(Fig. 1B). 

To find the mammalian F-box protein 
that recognizes cyclin E, we surveyed pre-
viously identified F-box proteins (11) for 
those that bound cyclin E either after coex-
pression in insect cells or in vitro using 
35S-methionine-labeled translation prod-
ucts and immobilized glutathione S-trans-
ferase (GST)-cyclin E-CDK2 complexes. 
Seventeen F-box proteins were tested, in-
cluding 16 that contained either WD40 or 
LRR motifs (18). Of these, only the WD40-
containing Fbw7 (19) bound specifically to 
GST-cyclin E-Cdk2 but not to GST alone 
(Fig. 1C) (20). This interaction was specific 

B 
Ub. fl.EZ AW U4fl.QAW El,El,ATI CyeWdkZ CycWdUKD 

+ t - LplKdbM(bd - + . + + Skpl/Cull/Kbxl + - . - SkpVCmIVllbd 
CddYDlgO - . . + . .  + Cdd r - .  . . . C d d  

C D E 
CST.CycPJ CST Ivt 

F 
IW - + CST.CycPnu IVT - A R Dl E Cyrlin 

K2--- CycEI KAMLSEQNRASPLPSCLLTPPQSCKKQ 
-%I@TRCP .. *=- L-phoaphatac + + - - -- ..-PbuZ P I + - - - -

Fig. 1. Interaction between cyclin E and SCF components in yeast and 
mammalian cells. (A) Stabilization of cyclin E in skp7-77, cdc34-2, cdc53-7, 
cdc4-7, and yor080 .mutants (72, 30). Strains of the indicated genotypes 
were grown in mediumcontainingraffinose; cyclin Eexpression was induced 
for 1 hour by galactose addition and at time = 0 was repressedby addition 
of glucose. Cells were harvested at the indicated times, and the abundance 
of cyclin E was determined by -immunoblotting. Extracts from uninduced 
cells are shown in Lane 1. WT, wild type. (B) Cyclin E is ubiquitinated in vitro 
by SCF complexes. SCF Cdc4 or complexes were purified from 
insect cells (73) and supplemented with ubiquitin (Ub), E l ,  Cdc34 (EZ), and 
ATP, as indicated, before addition of His6-cyclin E-Cdk2 purifiedfrom insect 
cells (73). (C) GST-cyclin E-Cdk2 binds Fbw7. Immobilized GST-cyclin 
E-CdkZ (lane 3) or GST (lane 2) was incubated with in vitro-translated 
F-box proteins (37, 32). Lane 1 contains in vitro translation (IVT) product. 
(33% of input). The bottom panel shows GST-cyclin E-Cdk2 and GST as 

detected by Coomassiestaining. The positionsof endogenous insectcellGST 
protein (eGST) and recombinant GST (rGST) are indicated. (D) Fbw7 
preferentiallybinds cyclin E-Cdk2. The indicated Cdk complexes (Lanes 2 to 
6) were purified from insect cells and used for in vitro binding with Fbw7 
as above. Cyclins were fused to  GST for affinity purification, except for 
cyclin D l  where GST-Cdk4 is used. (E) Phosphorylation-dependent asso-
ciation of Fbw7with cyclin E-Cdk2. lmmobilized GST-cyclin E-Cdk2 was 
treated with A-phosphatase in the presence (lane 1) or absence (lane 2) 
of phosphatase inhibitors (PI) before in vitro binding to  His6-Fbw7. 
Untreated GST-cyclin E-Cdk2 (lane 3) and GST (lane 4) were used as 
controls. Binding reactions were performed as in (C). (F) lmmobilized 
cyclin E- or cyclin D-derived peptides with or without phosphorylation 
were incubatedwith Fbw7, Fbwl (P-TRCP), Fbw2, and Fbw6 IVTproducts 
as in (C). The peptide sequence and sites of phosphorylation (P) are 
indicated (33). 
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for cyclin E as Fbw7 did not interact tightly 
with other cyclin-Cdk complexes (Fig. ID). 
The interaction between Fbw7 and cyclin E 
was phosphorylation-dependent (Fig. 1E). 
Furthermore, Fbw7 bound specifically to a 
phosphopeptide containing the region of 
cyclin E required genetically for ubiquiti-
nation (Fig. IF). Thus, the properties of 
Fbw7 are consistent with the predicted 
properties of a cyclin E ubiquitin ligase. 

The mouse and human Fbw7 cDNA en-
codes a protein of 627 amino acids containing 
seven WD40 repeats (Fig. 2, A and B). The 
presence of stop codons in all three reading 
frames of the 5' untranslated region (UTR) 
indicates that the encoded open reading frame 

(Owis full-length. Database searches re-
vealed substantial sequence similarity with 
Caenorhabditis elegans sel-10, which is in-
volved in the presenilin (sel-12) and Notch/ 
lin-12 pathways (24, and the predicted pro-
tein encoded by Drosophila melanogaster 
CG15010 (DmFbw7). Among S. cerevisiae F-
box proteins, Fbw7 is 28% identical to Cdc4 
(Fig. 2A). The relationship between sel-10 and 
a partial cDNA containingtwo COOH-terminal 
WD40 repeats h m  Fbw7 was noted previous-
ly (21). The extreme M-I,-terminus of Fbw7 
contains a 23-residue stretch (residues 7 to 29) 
of highly hydrophobic amino acids recognized 
by the SMART protein analysis program as a 
transmembrane domain (22). 

To examine the importance of the WD40 
motifs in cyclin E recognition, we searched for 
basic residues located on the surface of the 
P-propeller structure that are conserved in Hs-
Fbw7, Cdc4, Sel-10, and DmFow7 but not in 
other Fbw proteins. Such residues would be 
candidates for phosphorylation-dependent in-
teraction with ubiquitination targets. Arg417, 

and located in WD40 repeats 3, 
4, and 5, met these criteria (Fig. 2, A and D). 
These residues were independently replaced 
with alanine, and the resulting proteins were 
tested for binding to GST-cyclin E in vitro. 
Mutation of Arg4I7or abolishedbinding 
to cyclin E, whereas mutation of re-
duced binding (Fig. 2C). 

Fig. 2. Characteriza- A 
tion of the WD40-re-peat*ontaining F-box 

protein, Fbw7. (A) 
conservation between 
human (Hs) Fbw7 and 
C. elegans (Ce) sel- 70, 
5. cerevisiae (Sc) Cdc4, 
and D. melanogaster 
(Dm) Fbw7 (33). Iden-
tical residues are 

as r b w 7  
DI I b I 7  
c.. . l - 1 0  
8G CDC4 
se...m... 

n r a w 7  
Dm PC*? 
c. * * I - 1 0  
Ic CDC*  
C".'...m. 

shaded black and sim- ,,,,, ,,, .... . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ilarities are shaded , ;:: , 
gray. Asterisks indi- ~ : ~ ~ ~ , u ,;:: 
cate conserved argi---.- -- ..--..- - -- 0-

nine residues required ;;:; 
for cyclin E binding. ;
(6) Domain structures aOas*m.*s 

of Fbw7 homologs. F, ,,,,, ...................... . . . . . . . . . . . . . . . . . . . . . .
~-box;W, WDM re- Z::YI.O iiiE i t ! j E  ...................... 
peat. (C) Three surface z-,,CE:,,, ,,, ----------.-----
areinines on Fbw7 are a 

reGuired for binding k ; ~ ;  ::: ---------- - - - - - - - - --------------------
cyclin E. Wild-type U,:;:;I0 ::: aa- -- -- - - -- -- -- - - --
(WT) and mutant . - . 80mSm*  5 7 1  P 

Lu, lung; Pl, placenta; Br, brain; and He, heart. (F) 
Fbw7 assembles into an SCF complex. Vectors 
expressing CullHAand SkplHAwere transfected 
into 293T cells in the presence of pCMV-
F b ~ 7 ~ y ~(lane 1) or empty vector (lane 2) (31). 
After 48 hours, extracts were immunoprecipi-
tated with antibodies t o  Myc and immunoblot-
ted with antibodies t o  HA (top panel) or anti-
bodies t o  Myc (bottom panel). The asterisks 
indicate the positions of immunoglobulin G 
heavy and light chains. 

Fbw7 IVT products ,,,,, -----
were used for binding 2:.b;llo ----------
with GST-c~clinU S 

K t L V L  

E-Cdk2 (lanes 6 t o  9) 
or GST (lane 5). One- ,:$:::::::::::::I IbR--

third of the inputis 0 . m . 1 - 1 0  S S S  ------------~~ 
lo CDC4 7 1 9  A V S I D Q Q C I L S I L D I ~  

shown (lanes 1 t o  4). a 0 = * * 8 * ~ s  7 6 L  ire* t * ~ x ~ . w ~ s t r n~ . . ~ ~ T L V X ~ L ~ W . O  5 GSTQU 
(D) Model of the IVT --Cdk2 
P-propeller structure of human Fbw7 displaying B lU HSW C a a a  * a *  
Arg'" , and Ar$95 in red. The modelwas 
generatedwith Swissmodelwith P-transducin as 

lust-

template. (E) Expressionof Fbw7 in adult human -~-b- C c s a I O  
D m M

tissues. Northern blots containing the indicated 
mRNAs were probed with the Fbw7 cDNA. Pn, 
pancreas; Ki, kidney; Sk, skeletal muscle; Li. liver; 1 2 3 4 5 6  7 8 9  

;... ..... .- ...&;
K L I C I V O S R .  C C r K L  

A V 0 S R . I  E E T K  

www.sciencemag.org SCIENCE VOL 294 5 OCTOBER 2001 



Fbw7 mRNA is abundant in adult brain, 
heart, and skeletal muscle, tissues with a high 
percentage of terminally differentiated cells 
(Fig. 2E). Cotransfectionof vectors encoding 
Myc-tagged Fbw7 with hemagglutinin (HA)-
tagged Cull and HA-tagged Skpl in 293T 
cells allowed detection of Fbw7 in SCF com-
plexes, consistent with involvement of Fbw7 
in ubiquitination (Fig. 2F). 

We tested cyclin E ubiquitination in reticu-
locyte lysates in which either Fbw7 or Fbw2 
had been translated. Ubiquitinated forms of cy-
clin E were observed in the presence of Fbw7 
but not Fbw2 (Fig. 3A). Fbw7-dependentubiq-
uitination of cyclin E was also achieved in more 
purified systems. His,-Fbw7 was afkity-puri-
fied on immobilized GST-cyclin E-Cdk2 (Fig. 
3, B and C) or antibodies to His, (Fig. 3D) and 
used in ubiquitination reactions. Cyclin E ubiq-
uitination was dependent on Fbw7 (Fig. 3, B 
and C) and was stimulated by Cull-Rbxl (Fig. 
3, B to D). A small fraction of Fbw7 was 
associated with endogenous Cull in reticulo-
cyte lysates (20). The pattern of conjugates was 
distinctly different when a form of ubiquitin 
that cannot undergo polyubiquitination (GST-
UbRA) was included in the reaction mixture 
(Fig. 3C), indicating that the larger forms of 
cyclin E are ubiquitin conjugates. The ubiquiti-
nation reaction was.also stimulatedby phospho-
rylation of cyclin E (Fig. 3D) and was reduced 
when the cyclin E 'rWS0+ Ala (T380A) 
mutant was used as substrate (Fig. 3E). 

If Fbw7 is rate-limiting for controlling 
cyclin E abundance, overexpressionof Fbw7 
should lead to decreasedamounts of cyclin E. 
To test this, we transfected 293T cells with 
vectors encoding cytomegalovirus (CMV) 
promoter-driven cyclin E, Cdk2, and either 
Fbw7 or empty vector and assayed cyclin E 
amounts by immunoblotting. Cells cotrans-
fected with Fbw7 reproducibly had smaller 
amounts of cyclin E but constant amounts of 
Cdk2 (Fig. 4A). 

Converselv. inhibition of Fbw7 should lead< ,  

to increased accumulation of cyclin E. To test 
this, we used the small interfering RNA 
(siRNA) technique to reduce expression of 
Fbw7 in HeLa cells (23). Cells transfected with 
a double-stranded RNA (dsRNA) oligo corre-
sponding to Fbw7 showed increased accumu-
lation of cyclin E when compared with cells 
transfected with a control dsRNA oligo (Fig. 
4B). Amounts of Cdk2 and bulk Cdk2 activity 
remained unaffected (Fig. 4B) (20). The 
amount of p27 was similar in both Fbw7- and 
green fluorescent protein (GFPFinhibitedcells 
at the 48-hour time point, indicating that the 
accumulation of cyclin E in Fbw7-inhibited 
cells was not substantially influenced by p27 
(20). To assess the effect of Fbw7 on cyclin E 
stability, we used the siRNA-inhibited cells for 
a pulsechase analysis of cyclin E (2). Cells 
were labeled in vivo with 35S-methionine,sam-
ples were taken at the indicated times after 

El, EZ 
Ub,R.EZATP 

2060 20 60 20 60 20 60 60 60 60 Time(min)- - - - + + + + - - - Cull/Rbxl 

m u m -
- .  

E CycE l38OA 

L F ~  m,,-QcE-
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replacement with medium containing unlabeled 
methionine, and cyclin E was irnmunoprecipi-
tated (Fig. 4C). In the GFP siRNA cells, cyclin 
E was unstable, whereas in Fbw7-inhibited 
cells, cyclin E remains stable for the course of 
the experiment. Immunoblotting of the immu-
noprecipitates indicated that cyclin E amounts 
remained constant throughout the experiment. 

We also used the RNA interference 
(RNAi) technique to ablate Fbw7 in D. 
melanogaster (S2) cells (24). Transfection 
of S2 cells with dsRNAs corresponding to 
various portions of the DmFbw7 gene re-
duced amounts of DmFbw7 mRNA (Fig. 
4D) and increased accumulation of cyclin E 
protein but not that of a control protein, 
Mlel (Fig. 4D). In contrast, amounts of 
cyclin E mRNA were unaltered or slightly 
reduced, indicating that DmFbw7 regulates 

HisgCycEUb,, 

cyclin E through a posttranscriptional 
mechanism. Control dsRNAs had no effect 
on DmFbw7 or cyclin E (Fig. 4E). RNAi 
with the COOH-terminal fragment of Fbw7 
was less efficient in destabilizing Fbw7 
mRNA; thus, smaller increases in cyclin E 
accumulation were observed. 

In this report, we show that SCFFbw7-related 
ligases control the stability of cyclin E in a 
manner conserved through evolution. The find-
ing that different E3s can control cyclin E levels 
in yeast may have implications for control of 
cell proliferation in mammals. Such a role 
would allow multiple signals to be indepen-
dently integrated through different E3s to con-
trol cyclin E levels and cell proliferation. This 
could allow tissues to exert combinatorial con-
trol of proliferation and differentiation, consis-
tent with the tissue-specific expression of 

Fig. 3. Fbw7-dependent ubiquitination of cyclin E in vitro. (A) 

i Fbw7-dependent ubiquitination of cyclin E. His6-cyclin E-
CdkZ was added t o  different amounts of reticulocyte lysates, 
in which either Fbw7 or Fbw2 had been translated (32). 
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&A Lysates were supplementedwith ATP, El, Cdc34 (EZ), and Ub 
in the presence of the proteasome inhibitor LLnL, ubiquitin 

HisgCycE- aldehyde, and an ATP-regenerating system for 60 min at 30°C. , , , , , , Reaction mixtures were immunoblotted with antibodies to 
cyclin E. No lysate was added to lanes 1 or 4. (B and C) 

Ubiquitination of CST-cyclin E by prebound His6-Fbw7. (0) Immobilized GST-cyclin E-Cdk2 was 
incubatedwith reticulocyte extracts in the presence or absence of Fbw7. Beads were supplemented 
with E l ,  Cdc34 (EZ). ATP, and either ubiquitin (Ub; 100 p.g/ml) or GST-UbRA(100 ~ g l m l ) .Where 
indicated, 50 ng of a purified Cull-Rbxl complex was added. The asterisks indicate the positions 
of three roteins that cross react with the monoclonal antibodies to  cyclin E. (C) As in (B), butJCST-Ub was used in place of ubiquitin. (D) Cyclin E phosphorylation enhances ubiquitination of 
cyclin E by SCFFbw7.Reticulocyte lysates with or without His -Fbw7 were immunoprecipitated with 
antibodies to  His tag, supplemented with cyclin E-Cdk2 !or cyclin E-CdkZKD), E l .  Cdc34 (EZ), 
ubiquitin, and ATP and incubated at room temperature for the indicated time. Samples were 
treated as in (B). (E) Phophorylation of Thr3" enhances ubiquitination of cyclin E. Reactionswere 
performed as in (A), but cyclin E T380A was also used as substrate. 
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Fig. 4. Fbw7 controls cyclin E abundance in vivo. 
(A) Reduced amounts of cyclin E in cells overpro- m w  -. -- s 7 
ducing human Fbw7. 293T cells were cotrans- . -  a 
fected with pCMV-cyclin E and pCMV-Cdk2 to- 

-Cyc E 

gether with either p c M V - F b ~ 7 ~ y ~  (Lane 1) or lo 11 
empty vector (lane 2)  (37). After 48 hours, ex- 
tracts were prepared and immunoblotted with antibodies to  Cdk2, cyclin E, or Myc. (B) Accumu- 
lation of cyclin E in HeLa cells transfected with Fbw7 siRNA but not CFP siRNA. Cells were 
transfected as described (23,34). At the indicated times, cells were harvested and cell lysates were 
generated. Samples were immunoblotted with antibodies to cyclin E or Cdk2. (C) Cyclin E is stable 
in Fbw7-inhibited cells. Cells were transfected as in (B), and pulse-chase analysis was performed as 
described (2). Medium containing unlabeled methionine was added at time = 0. Samples were also 
immunoblotted with monoclonal antibodies to  cyclin E (bottom panel). Arrows indicate the two 
major forms of cyclin E. (D and E) Accumulation of DmCycE in response to  ablation of DmFbw7 by 
RNA interference. S2 cells were transfected with dsRNA corresponding to  the NH,-terminal 
(N-term), COOH-terminal (C-term), or F-box region of DmFbw7 or against P-galactosidase (p-gal) 
as a control (34). At the indicated times, cells were harvested and used to generate protein extracts 
and total RNA. (0) Cell extracts were immunoblotted with polyclonal antibodies against DmCycE 
or maleless (Mle). (E) Messenger RNA was subjected to  Northern blotting with probes directed 
toward DmFbw7, DmCycE, or a ribosomal RNA (RP49). 

Fbw7. Cells lacking the F-box protein Skp2 site of loss of heterozygosity in a number of 
also accumulate cyclin E (25). However, this cancers (29). Additional studies will be required 
effect may be an indirect result of the accumu- to resolve Fbw7's role in tumorigenesis. 
lation of the Skp2 substrate, p27 (26, 27). In- 
dividual E3s often control the ubiquitination of References and Notes 
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