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Triglycerides in Humans and 
An Apolipoprotein lnf luencing 

this cluster dramatically affect plasma lipid 
profiles in both humans and mice (2, 8-12), 
and common sequence polymorphisms in this 
interval have been implicated as contributing 
to severe hypertriglyceridemia (13-16). 

Mice Revealed by Comparative 
Genome sequencing efforts produced fin-

ished sequence throughout the human APOAI/ 
CIII/AIV region, thereby providing a resource 
to better understand the genomic structure of Sequencing 
this locus (1 7). To facilitate the identification of 
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conservation about 30 kbp proximal to the 
APOAI/CZII/AZV gene cluster, we identified a 
genomic interval that contained a putative apo- 
lipoprotein-like gene (APOAV) (Fig. 1B). The 
presence of publicly available mouse ex- 
presbd-sequence tags (ESTs) matching the 
mouse genomic sequence suggested that the 
interval was transcribed. The annotation of 
mouse ESTs on the mouse genomic sequence 
identified four exons containing a 1107-base 
pair (bp) open reading frame. The predicted 
368-amino acid sequence showed significant 
homology to various known apolipoproteins, 
with the strongest similarity to mouse Apoaiv 
(24% identity and 49% similarity). Examina- 
tion of the orthologous human genomic se- 
quence indicated a genomic structure similar to 
the mouse region and predicted an open reading 
frame encoding a 366-amino acid protein with 
high sequence homology to mouse Apoav 
(71% identity and 78% similarity), as well as 
human APOAIV (27% identity, 48% similari- 
ty). Protein structure analyses predicted several 
amphipathic helical domains and an NH,-ter- 
minal signal peptide in both human and mouse 
APOAV, characteristic features of lipid-bind- 
ing apolipoproteins (19, 20). To determine the 

expression pattern of APOAV, we hybridized 
Northern blots containing mRNA from several 
different human and mouse tissues with 
APOA V cDNA probes from human and mouse, 
respectively (Fig. 2, A and B). Transcripts 
about 1.3 and 1.9 kilobases (kb) in length were 
identified predominantly in liver tissue from 
both species. The full-length sequences of 
mouse cDNAs indicated the two transcripts in 
mice are likely the result of alternative polyad- 
enylation (21,22). 

To assess the function of APOAV, we 
generated mice overexpressing human 
APOAV as well as mice lacking Apoav, 
through standard mouse transgenic and gene 
knockout technologies (Fig. 2, C to E) (23- 
25). Upon comparing these two groups, we 
observed dramatic, but opposite effects on 
plasma triglyceride levels (26). Human 
APOAV transgenic mice were created by us- 
ing a 26-kbp Xho I fragment predicted to 
contain only human APOA V, and this genom- 
ic transgene was expressed in liver, as is the 
endogenous gene (Fig. 2C). These transgenic 
mice had levels of plasma triglyceride that 
were about one-third of those of control lit- 
termates [0.32 ? 0.1 1 (S.D.) mg/ml versus 

A MOU.0 B Human c Human tranagenlc mouse 

1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  

D K~kOUlmOUse 
I 17.4 kb 1 

EcoRl 
+I+ +I- -1- 

wim- pe EcoRl Xhol 

awk/- locus I.'/ 1 2 3  
I 0 / 

/ I kb 
I 0 * 9.5- 

Notl EcoRl Xhol EcoRl EcoRl 7.5- 

Neo 4.4- 

1-10.2 kb-1 
EcoRl Xhol EcoRl EcoRl 

targeM 
locus I - 

3' probe 

Fig. 2. APOAV expression in humans and wild-type, transgenic, and knockout mice (52). (A) A 
mouse Apoav cDNA probe was hybridized to  a multi-tissue RNA blot from wild-type mice. Each 
lane contained one of eight mouse tissues (Clontech, Palo Alto, California): 1, heart; 2, brain; 3, 
spleen; 4, lung; 5, liver; 6, skeletal muscle; 7, kidney; or 8, testis. (B) A human APOAV cDNA probe 
was hybridized to  an RNA blot containing eight human tissues (Clontech,): 1, heart; 2, brain; 3, 
placenta; 4, lung; 5, liver; 6, skeletal muscle; 7, kidney; or 8, pancreas. (C) A human-specific APOAV 
cDNA probe was hybridized to  total RNA blots from human APOAV transgenic mice and controls. 
Lane assignments are as follows: 1 and 5, transgenic liver; 2 and 6, transgenic intestine; 3 and 7, 
wild-type liver; and 4 and 8, wild-type intestine. (D) A diagram of the targeting construct used to  
generate Apoav-deficient mice. Homology arms were designed to  delete the coding exons of the 
gene (depicted by black boxes). Properly targeted embryonic stem cells were identified by using an 
external 3' probe, which detects a 17-kb Eco'RI fragment wild-type allele and a 10-kb Eco RI 
fragment upon targeting (27). (E) Northern blot analysis of various genotype mice following the 
A oav targeting event. Each lane contains liver mRNA from a wild-type (lane I), heterozygous (lane 
2f and hornozygous knockout mouse (lane 3). To confirm similar amounts of RNA were loaded per 
lane, duplicate gels were examined by ethidium bromide staining. 

0.90 t 0.29; t test, P < 0.00011 (Fig. 3A). 
Similar data were obtained from a second 
independent founder line (27). Apoav knock- 
out mice were generated by deleting the three 
exons predicted to encode Apoav (Fig. 2D). 
Despite the lack of Apoav transcript (Fig. 
2E), mice homozygous for the deletion were 
born at the expected Mendelian rate and'ap- 
peared normal. In contrast to the decreased 
triglyceride levels noted in APOAV transgen- 
i c ~ ,  Apoav knockout mice had about four 
times as much plasma triglyceride as their 
wild-type littermates [1.53 t 0.77 (SD) mg/ 
ml versus 0.37 t 0.12; t test, P < 0.001) 
(Fig. 3B). Characterization of lipoproteili par- 
ticles by fast-protein liquid chromatography 
(FPLC) and gradient-gel electrophoresis 
(GGE) revealed that levels of very low den- 
sity lipoprotein (VLDL) particles were in- 
creased in the homozygous knockout mice 
and decreased in the transgenic mice com- 

Trlglycerlde Cholesterol 

Trlglycerlde Cholesterol 

Fig. 3. Plasma triglyceride and cholesterol lev- 
els for APOAVtranseenic and knockout mice on 
standard chow die< (A) Human APOAV trans- 
genic mice compared with isogenic FVB strain 
control littermates (n = 48 for transgenics; n = 
44 for controls; Student's t test *P < 0.0001 
for transgenic versus control). (B) Mice lacking 
Apoav compared with mixed 129SvIC57BL6 
strain controls littermates (n = 13 for wild- 
type, +/+; n = 22 for heterozygotes, +/-; n = 
10 for homozygous knockouts, -I-; Student's t 
test, **P < 0.001 for wild-type versus knock- 
out). Error bars correspond to  the standard 
deviation for both graphs. No differences were 
found in HDL-cholesterol levels in transgenic or 
knockout mice compared with controls (27). 
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pared with controls (28). VLDL levels in a 
heterozygous knockout mouse were interme- 
diate between the homozygous knockout and 
control mouse. VLDL peak particle size as 
assessed by GGE and FPLC peak elution 
volume was similar in all animals (29).Anal-
ysis of FPLC elution volumes demonstrated 
mouse Apoav immunoreactivity in VLDL 
and HLD fractions. 

The observed changes in plasma triglyc- 
eride levels in Apoav knockout and trans- 
genic mice were directly opposite those pre- 
viously reported in Apociii knockout and 
transgenic mice (9, 10). The Apoav knock-
outs in our study displayed about a 400% 
increase in plasma triglycerides compared 
with the 30% decrease noted in Apociii 
knockouts, whereas APOAV transgenics 
showed decreased triglyceride levels com-
pared with the increase reported in APOCIII 
transgenics. Accordingly, we examined the 
effect of altered APOAV expression on Apociii 
levels. Differences were found in apociii pro- 
tein but not transcript levels in both APOAV 
transgenic and knockout animals; Apociii lev- 

els were increased -90% in Apoav knockouts 
and decreased -40% in APOAV transgenics. 
Because alterations in APOAV expression lead 
to changes in Apociii protein levels, the 
effect on triglycerides we observed may be 
mediated through Apociii. The fact that 
APOAV transgenic mice have one-half the 
triglycerides that the previously described 
Apociii knockout mice have indicates (10) 
that changes in Apociii alone cannot ex-
plain the entire effect of APOAV. In addi- 
tion to APOCIII, the overexpression of sev- 
eral human apolipoprotein transgenes has 
been shown to increase triglyceride levels 
in mice (8, 9, 30-33), whereas only the 
APOAV transgene leads to decreased tri- 
glycerides, suggesting another mechanism 
behind this effect. 

The observation of significant lipid abnor- 
malities in mice overexpressing and lacking 
Apoav led us to explore the relationship be- 
tween DNA sequence polymorphisms in the 
gene and plasma lipid levels in humans. To 
serve as genetic markers for association studies, 
we identified single nucleotide polyrnorphisms 

(SNPs) across and surrounding the human 
APOAV locus (34) (Fig. 1A). Four markers 
with relatively high minor allele frequencies 
(>8%) were obtained. Three of the SNPs were 
separated by 3 kbp within APOAV (SNF'I to 
SNP3); the fourth SNP (SNP4) was located 
-1 1 kbp upstream of the gene (Fig. 1A). These 
markers were scored in about 500 random un- 
related normolipidemic Caucasian individuals 
who had been phenotyped for numerous lipid 
parameters before and after consumption of 
high- and low-fat diets (35). We found signifi- 
cant associations between both plasma higlyc- 
eride levels and VLDL mass and the three 
neighboring SNPs (SNPs 1 to 3) within APOA V 
but not with the distant upstream SNP4 (Figs. 
1A and 4A). Specifically, the minor allele of 
each of these SNPs (SNPs 1 to 3) was associ- 
ated with higher higlyceride levels independent 
of diet. Independent analysis of each of these 
SNF's (SNPs 1 to 3) revealed plasma triglycer- 
ide levels were 20 to 30% higher in individuals 
having one minor allele compared with individ- 
uals homozygous for the major allele (Fig. 4A). 
Analysis of SNP allele frequencies in more than 

High fat diet 73.91-3.3 108.01-11.8 0.0002 73.713.3 112.8+12.7 <0.0001 7 0 . 6 3 2  113.751 1.8 <0.0001 82.1+5.7! 82 .6~6 .5  71.71-6.8 0.67 

Low fat diet 116.51-4.9 152.91-16.8 0.0065 112.915.0 155.6118.1 0.0071 116.0i5.0 155.2516.9 0.0037 123.31-15.5122.817.7 127.51-7.8 0.91 

LDL-cholesterol 

High fat diet 122.011.8 122.5+3.9 0.90 122.71-1.8 122.2~4.1  0.91 123.51-1.9 122.71-4.2 0.86 121.8+2.5 121.412.4 126.214.6 0.65 

Low fat diet 111 .7~1 .6  110.51-4.0 0.76 112.5i1.6 109.81-4.2 0.51 112.814.2 109.914.6 0.50 110.812.3 111.31-2.2 115.71-4.4 0.59 

HDL-cholesterol 

Highfatdiet  4 8 . 6 ~ 0 . 7  46.81-1.5 0.26 48.410.7 47.7+1.5 0.66 48.710.7 47.7+1.6 0.86 48.11-0.9 48.3iO.9 49.21-1.9 0.83 

Lowfatdiet  41.61-0.5 40.5+1.3 0.40 41.61-0.5 40.81-1.3 0.52 41.810.5 40.6+1.4 0.37 41.51-0.8 41.210.7 42.611.4 0.66 
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Fig. 4. Human APOAV polymorphisms and lipid 
association data. (A) Plasma lipid concentrations for 
a given genotype for 4 neighboring SNPs (SNPs 1 t o  
4). Individuals (n = 501) were genotyped, and the 
number of successfully scored individuals is indicated. Notation: 1,l is homozygous for the major allele; 1,2 is heterozygous for the major and minor 
alleles. Three individuals were homozygous for the SNP3 minor allele and had a mean plasma triglyceride level of 210 -C 155 mgldl. Because of the 
small number of individuals, these data were excluded from the analysis. All sites were found to  be in Hardy-Weinberg equilibrium (53). The minor 
allele frequency for each SNP (SNPs 1 t o  4) was 9.1, 8.4, 9.2 and 36.3%, respectively. Not  shown is the lack of association between each of the four 
SNPs and IDL-, LDL-, HDL-mass, ApoAl, and ApoB levels [P > 0.05, (54)) (B) Pair-wise measure of linkage disequilibrium (ID'I) was calculated for all 
combinations of SNPs as previously described (55). A ID'I value of 1 indicates complete linkage disequilibrium between two markers. (C) A summary 
of SNP3 genotyping data from an independent set of individuals stratified based on triglyceride levels. P values were determined by chi-square analysis. 
BMI, body mass index; TG, plasma triglyceride level (mgldl 2 SD). Similar analysis stratifying the original population did result in statistically significant 
differences in the genotype distribution when we used a similar analysis (P = 0.044). 
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1000 chromosomes revealed that the three 
neighboring SNF's (SNF's 1 to 3) in APOAV 
were in significant linkage disequilibrium that 
does not extend to SNP4 (located -I 1 kb up- 
stream of APOA V) (Fig. 4B). This fmding sup- 
ports the existence of a common haplotype in 
the APOAV region influencing plasma triglyc- 
eride levels (Figs. 1A and 4B). Furthermore, 
studies in thls population found no significant 
association of triglyceride levels with an Sst I 
polymorphism in APOCIII (located -40 kbp 
upstream of APOAV) (Fig. 1A) whch has been 
previously associated with hypertriglyceride- 
mia (15, 16,28, 36). This finding indicates that 
the APOCIII Sst I polymorphism is not a mark- 
er for the metabolic effect defined by the 
APOA V haplotype. 

~~~~~i~ association studies have frequently 
proved to Therefore, we 
nerformed a second human association studv r~ - - - - - - - - - -~ ~-~ - ~-~ 

with one SNP ( ~ ~ 3 1in an independently 
certained cohort using a different experimental 
design (37).SNP3 was chosen for genotyping - .  	 - - - -
in this based on its strong association in 
Our first study and jts apparent linkage 
disequilibrium with the other two associated 
S M s  ( S w s  1 and 2) (Fig, 4, A and B), In the 
second study, we examined the allele fiequen-
cies for SNP3 in an unrelated group of Ca~ca-  
sians stratified according to pla~matriglyceride 
levels (Fig. 4C). The two groups represented 
161 individuals with triglyceride levels in the 
top 10th percentile and 298 individuals from the 
bottom 10th percentile. A significant overrep- 
resentation of the heterozygous genotype was 
found in individuals with high compared with 
low plasma triglyceride levels (21.7% versus 
6.7%, respectively), thereby validating the as- 
sociation of APOAV polymorphisms and tri-
glyceride levels in a second cohort. When the 
cohort was stratified based on gender, an even 
more pronounced overrepresentation of the het- 
erozygous genotype was found in males with 
high compared with low plasma triglyceride 
levels (29.9% versus 4.2%, respectively). 

Despite the previous availability of se-
quence in the human APOAI/CIII/AIV genomic 
interval, we only recently were directed to a 
novel gene (APOA V) by comparison of human 
and mouse sequence, illustrating the power of 
comparative sequence analysis to prioritize po- 
tential functional regions of the genome. 
APOA V represents a fourth member of the clin- 
ically important apolipoprotein gene cluster on 
human 1 lq23. Our human and mouse data, 
both when taken independently and combined, 
indicate an inmortant role for APOAV in ulas- 
ma triglyceride homeostasis. Although previous 
data have associated the APOCIII locus with 
extremely high plasma triglyceride levels in 
humans, our study indicates that the APOAV 
genomic interval represents an independent in- 
fluence on this important lipid parameter in the 
general population. These results suggest the 
possible use of APOAV polymorphisms as 
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prognostic indicators for hypertriglyceridemia 
susceptibility and the focus on APOAV modu- 
lation as a potential strategy to reduce this 
known cardiovascular disease risk factor. 
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Phosphorylation-Dependent 
Ubiquitination of Cyclin E by 
the SCFFbw7 Ubiquitin Ligase 
Deanna M. K ~ e p p , ' , ~ , ~  	 Xin Ye,'* Laura K. S~haefer , ' ,~ .~*  

Khandan Keyomar~ i ,~  Claire Chu,' J. Wade Harper,' 
Stephen J. ELledge'-2*31-

Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the 
transition from the C, phase t o  the S phase of the cell cycle. The amount of 
cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated 
proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiq-
uitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, 
flies, and mammals. Fbw7 associates specifically wi th  phosphorylated cyclin E, 
and S C F ~ ~ " ~  catalyzes cyclin E ubiquitination in  vitro. Depletion of Fbw7 leads 
t o  accumulation and stabilization of cyclin E in  vivo in  human and Drosophila 
melanogaster cells. Multiple F-box proteins contribute t o  cyclin E stability in  
yeast, suggesting an overlap in  SCF E3 ligase specificity that allows combina- 
torial control of cyclin E degradation. 

Passage through the cell cycle is controlled 
by the activity of cyclin-dependent kinases 
(CDKs) (1).Cyclin E is the regulatory sub- 
unit of Cdk2 and controls the G, to S phase 
transition, which is rate-limiting for prolifer- 
ation. Cyclin E is tightly regulated by ubiq- 
uitin-mediated proteolysis, which requires 
phosphorylation on Thr380 and C d U  activa- 
tion (2-4). Failure to properly regulate cyclin 
E accumulation can lead to accelerated S 
phase entry (9,genetic instability ( 6 ) , and 
tumorigenesis (7). Elucidating the mecha- 
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nism controlling cyclin E destruction has im- 
portant implications for understanding con- 
trol of cell proliferation during development 
and its subversion by tumorigenesis. 

The formation of polyubiquitin-protein 
conjugates, which are recognized and de- 
stroyed by the 26s proteasome, involves 
three components that participate in a cascade 
of ubiquitin transfer reactions: a ubiquitin-
activating enzyme (El), a ubiquitin-conjugat- 
ing enzyme (E2), and a specificity factor (E3) 
called a ubiquitin ligase (8) .E3s control the 
specificity of target protein selection and 
therefore are key to controlling individual 
target protein abundance. 

The SCF (SkplICullinlF-box protein) com- 
prises a large family of modular E3s that con- 
trol ubiquitination of many substrates in a phos- 
phorylation-dependent manner (9). SCF com- 
plexes contain four subunits: Skpl, Cull 
(Cdc53), Rbxl, and an F-box-containing pro- 
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