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Oligonucleotide microarrays were used t o  map the detailed topography of 

chromosome replication in the budding yeast Saccharomyces cerev7si;e.- he 

times of replication of thousands of sites across the genome were determined 

by hybridizing replicated and unreplicated DNAs, isolated at  different times in 

S phase, t o  the microarrays. Origin activations take place continuously through- 

out S phase but wi th  most firings near mid-S phase. Rates of replication fork 

movement vary greatly from region t o  region in  the genome. The two  ends of 

each of the 16 chromosomes are highly correlated in their times of replication. 

This microarray approach is readily applicable t o  other organisms, including 

humans. 

The replication of eukaryotic chromosomes is 
highly regulated. Replication is limited to the S 
phase of the cell cycle; and within S phase, 
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initiation of replication is controlled with re- 
spect to both location and time. The sites of 
initiation, called replication origins, have been 
best characterized in the budding yeast Saccha-
romyces cerevisiae, in which a hct ional  assay 
based on plasmid maintenance has allowed 
identification of potential origins of replication 
[autonomous replication sequence elements 
(ARSs)l. There are estimated to be -200 to 

,J 
- - ~  ~ - ~ -

400 A R S ~in the yeast genome (1,4,and most, 
but not as 
(3). The few origins investigated at the se--

quence level usually encompass -200 base 
pain @PI; most contain a perfect match or a 
one-base mismatch to an I 1-bp ARS consensus 
Sequence (ACS) (4, 5).  How&er, the presence 

an is sufficient predict an "gin
of replication: There are many more ARS con- 
sensus sequences in the genome than origins 
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and the -200 bp o f  sequence that flank the 
ACS, although essential, share no obvious se-
quence similarities (3). 

From the analysis o f  a few origins, the 
general features o f  origin control in yeast 
appear to be as follows (6-8). Most (perhaps 
all) origins are found in intergenic regions, 
but only a subset are chosen as replication 
origins in any given S phase. Furthermore, 
origins range inefficiency from those that are 
active in almost every cell cycle to those that 

are used in only a small proportion o f  cell 
cycles. Origins are activated ina reproducible 
temporal sequence through S phase. The time 
o f  origin activation appears not to be an 
intrinsic property o f  the origin itself; rather, i t  
is imposed by  cis-acting elements that are 
separable from the origin (9,lO). Some trans-
acting factors involved with the temporal pro-
gram have been identified recently (11-14), 
but how they read and execute the program is 
still unclear. 

A GI: S phase:
Heavy medium Light medium 
13 15 12 14

( c, N) ( '2, N) 
11111111 

Hypothetical 
1 I 1-- 5 

chromosome - - -

Restktiondigest 1 1 5- 5 
CsCl density gradient
centrifugation 0 0 Replicated 

Unrepllcated * (Heavy-Light)
(Hm~y-Hmvy) 

/ \
I 

Label, 
hybridize 

'm 

How origins are chosen for activation and 
how timing is determined remain open ques-
tions. With the availability o f  the yeast ge-
nome sequence and DNA microarray tech-
nologies, i t  is possible to expand our under-
standing o f  origin activity greatly by  exam-
ining the kinetics o f  replication across the 
entire yeast genome. Here we provide the 
locations and times o f  activation o f  the most 
efficient origins, as wel l  as the directions o f  
replication fork movement and fork migra-

...%HL for all 10 kb windows 

0 
Replication profile 

Fig. 1. Outline of the experiment and the 
data-processing steps. (A) MATa yeast cells 
carrying a temperature-sensitive lesion in 
CDC7 are grown for many generations in me-
dium containing 13Cglucose and 15N nitrogen 
[(15NH,),SOJ (28). The cells are arrested be-
fore the onset of DNA replication by the addi-
tion of a factor and by shifting the cells to  the 
restrictive temperature, then are washed and 
resuspended in isotopically light medium. 
When DNA replication begins again, the newly 
synthesized DNA is labeledexclusivelywith the 
light isotopes. Samples are collected through-
out S phase. The DNA is fragmented with a 
restriction enzyme (Eco RI) and fractionated by 
cesium chloride density-gradient centrifugation 
to  separate the molecules carrying the two 
different density labels. These two fractions are 
then biotinylated and separately hybridized to  
high-density arrays carrying probes to  the en-
tire genome. (B) Data processing (76) illustrat-
ed with a hypothetical data set for one early-
and one late-replicating region. The shaded 
boxes with the numbers below them represent 
cells of the microarray and the corresponding 
hybridization values (a black box corresponds 
to  no signal): The sum of the hybridization 
intensities obtained with unreplicated, fully 
dense DNA (HH) for the various S phase sam-
ples is calculated, as is the sum of the intensi-
ties with replicated (HL) DNA. The % HL(totg is 
then calculated with the equation 

C Early 

%HL! 

Late 

A DNA fragment that replicatesearly in Sphase 
will be present in the HL fraction through much 
of the time course; in contrast, a late-replicat-
ing fragment will be represented in the HL 
fraction only at later times in Sphase. Thus, the 
%HL(,,* value is a direct reflection of the time 
of replication of a fragment, which we have 
calculated in the past as t,, (70, 77, 28) [see 
(77)l. (C) The replication profile for a chromo-
some is constructed by plotting the %HLpOml) 
as a function of the chromosome coordinate. 
Peaks represent regions that replicate earlier 
than the neighboring sequences and must 
therefore correspond to  origins of replication; 
the taller a peak, the earlier the origin fires (ori, 
origin). Valleys correspond to  termination 
zones. Shoulders along the lines connecting 
peaks and valleys (open arrow) could result 
either from inefficient origins or from changes 
in the fork migration rate. The slope of the line 
connecting a peak and a valley gives the direc-
tion and rate of fork migration through that 
region: A shallow slope reflects a fast fork, 
whereas a steep slope refleas a slow fork. 

Early ori 

Late ori 

terminus 
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tion rates from these origins. After growth in 
isotopically dense culture medium, cells are 
released into S phase, and replicated [heavy- 
light (HL)] DNAs and unreplicated [heavy- 
heavy (HH)] DNAs are isolated from samples 
collected 10, 14, 19, 25, 33, 44, and 60 min 
later (Fig. 1). Each DNA sample is labeled 
and hybridized to a high-density oligonucle- 
otide array (15). Hybridization reveals the 
relative abundance of specific genome se- 
quences present in the unreplicated versus 
replicated DNAs at different times in S phase. 
Summing the hybridization values over all 
the samples for both HH and HL DNA at 
each chromosome coordinate gives an aggre- 
gate %HL value for that coordinate, which 
reflects its relative time of replication [Fig. 
1B (16)] [see (17) for details]. Graphing 
these aggregate %HL [%HL(,,,,,,] values ver- 

Fig. 2. Replication 
profile for chromo- 
some VI, showing t,, 
plotted as a function 
of coordinate. The 
%HLpOtaO values were 
converted to t,,, val- 
ues using the correla- 
tion between the set 
of %HL values and the 
corresponding set of 
t,, values calculated 
for each coordinate 
(76, 77). The small cir- 
cle on the X axis 

Early 

Late 

sus chromosome coordinates yields a replica- 
tion profile for a chromosome (Fig. lC), with 
higher values of %HL(,,,,,, being indicative 
of earlier replication. 

Interpreting the plots. To allow auto- 
mated identification of peaks and valleys in 
the replication profiles, a Fourier convolution 
algorithm was used to smooth them (I 6, 17). 
These smoothed profiles were used to identi- 
fy potential origins of replication: Because a 
peak reveals a region that replicates before its 
neighbors, it must correspond to an origin of 
replication. Likewise, valleys correspond to 
termination zones ("terminus" in Fig. 1C). 
Tall peaks correspond to early-activated ori- 
gins and shorter peaks to later-activated ori- 
gins. Overall, we detected 332 origins in the 
yeast genome. Replication profiles for all 
chromosomes and the corresponding data in 

marks the location of Chromosome coordinate (kb) 
the centromere. Dark 
gray bars correspond 
to restriction fragments known to contain replication origins (18, 19). The heights of the bars 
correspond to their relative replication times (78), scaled to match the t,, values calculated for the 
microarray experiment. Inverted triangles mark the four origins that are used in 250% of the cell 
cycles. Gaps in the profile correspond to regions of low probe density. Numbers above the peaks 
indicate the robustness of the peaks on a scale of 1 to 9 [larger numbers are indicative of more 
robust peaks (76)]. 

Table 1. Match between known efficient origins and peaks in replication profiles. 

Chromosome Name Left end* Right end* Nearest peak 
(distance?) 

II SH1022 61.200 
111 ARS305 39.132 
111 ARS306 74.428 
111 ARS307 108.775 
111 ARS309 131.582 
111 ARS310 166.211 
IV ARS1 462.61 1 
IV SH1023 750.000 
V ARS501 549.644 
VI ARS603 65.000 
VI ARS603.5 117.101 
VI ARS606 167.698 
VI ARS607 199.051 
X ARSl2l 683.653 
XIV ARS1411 168.000 
XIV ARS1412 195.652 
XIV ARS1413 250.800 
XIV ARS1414 280.001 

*Coordinates are in kb from the left end of each chromosome. 
origin fragment is given in parentheses. 

61.500 58.273 (3.077) 
39.682 38.301 (1.106) 
74.648 77.855 (3.317) 

108.975 11 5.906 (7.031) 
131.928 128.423 (3.332) 
167.060 174.486 (7.850) 
462.648 464.369 (1.740) 
752.500 755.444 (4.194) 
549.680 542.464 (7.198) 
70.000 66.346 (1.1 54) 

120.038 122.427 (3.858) 
167.750 168.994 (1.270) 
200.972 196.033 (3.979) 
683.702 684.266 (0.589) 
170.100 158.780 (10.270) 
196.883 201.788 (5.521) 
250.849 250.798 (0.027) 
280.049 279.803 (0.222) 

tThe distance to the center of the nearest known 

tabular form can be found in the supplemen- 
tary material (I  7). 

Chromosome VI has been studied exten- 
sively (18, 19) and is a good candidate for 
assessment of the microarray approach. The 
replication profile deduced from the microar- 
ray data for chromosome VI is shown in Fig. 
2. Superimposed on this plot are the locations 
of restriction fragments that are known to 
contain origins [gray bars; heights of bars 
correspond to the replication times of the 
origin fragments themselves or of adjacent 
restriction fragments, determined previously 
(18)l. The array data clearly show a good 
match with the known replication character- 
istics of chromosome VI. For example, the 
tallest peak in the profile, which predicts the 
location of the earliest-activated origin on the 
chromosome, matches the known location of 
ARS607, which has been shown previously to 
be the earliest-activated origin on the chro- 
mosome (18). Likewise, the shorter peaks 
(such as the one centered at -63 kb) corre- 
spond to the locations of origins known to be 
activated later in S phase. 

Predicting origin locations. To further 
test the efficacy of the array data in predicting 
origin locations and replication times, we 
used two approaches. First, we asked how 
well the peaks in replication profiles reveal 
the locations of 18 origins known to be effi- 
cient and localized to regions of 1 5  kb (20). 
Peaks in the replication profiles occurred 
close to each of these 18 origins (24, with a 
mean distance of 3.7 kb between predicted 
origins and centers of known origin windows 
(Table l), a match that is significantly better 
than that expected by chance (P = 4.8 X 
10-1'). 

In a second approach, we examined chro- 
mosome X, which had been largely unexam- 
ined for replication. Four prominent peaks 
were selected at random from its replication 
profile (a, b, d, and e in Fig. 3A). Restriction 
fragments (- 13 kb or smaller) corresponding 
to the predicted origins were tested by two- 
dimensional (2D) gel electrophoresis. Abun- 
dant bubble structures were detected at each 
of the four locations (Fig. 3B), confirming 
that they did correspond to active replication 
origins, whereas flanking restriction frag- 
ments tested did not show bubble structures 
(22). Given that bubble' structures can be 
detected only if replication originates within 
the central half of a restriction fragment, and 
assuming that there are -400 origins in the 
yeast genome (2), the probability of detecting 
origin activity in any random 13-kb fragment 
is -0.22. Therefore, the likelihood of having 
origin activity in all four fragments just by 
chance is 0.002. This value is a conservative 
estimate, as two of the four fragments tested 
were actually substantially smaller than 13 
kb. These results indicate that the replication 
profiles can indeed predict locations of effi- 
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Chromosome coordinate (kb) 
8 

Fig. 3. Replication profiles predict origin locations. (A) Replication profile for chromosome X. 
Numbers above the peaks indicate the robustness of the peaks (76). (B) Origin activity at five 
locations on chromosome X. Features marked a, b, d, e, and fin the profile (A) were tested for origin 
activity by 2D gel electophoresis (46). The small horizontal bars under the letters in (A) correspond 
to the restriction fragments that were tested. The origin marked e corresponds to ARS727. Bubbles 
were detected in each fragment, indicating the presence of active origins. The long exposure 
required to see the bubble intermediates in region f indicates that the origin at -250 kb is 
inefficient. 
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j Slot blot 
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Fig. 4. Profiles predict the temporal program of replication. (A) Replication kinetics of fragments 
corresponding to locations marked a through d in Fig. 3A were determined by slot blot analysis as 
described (28). The DNA samples used were from the same experiment as was used for hybrid- 
ization to the microarrays. "Early marker" and "late marker" refer to the replication kinetics of 
ARS305 (chromosome Ill) and R11 (chromosome V), known to replicate very early and very late in 
5 phase, respectively (33). (B) Replication times of 60 restriction fragments on chromosome X from 
slot blot hybridization (23). The profiles deduced from microarray data (gray shaded area; data of 
Fig. 3A) and from this slot blot experiment (bars connected by dotted lines) are shown. The width 
of a bar reflects the length of the restriction fragment that was tested; the height of the bar (mean 
of six replicates) corresponds to the relative %HL[,,,,, for that fragment, and therefore corresponds 
to replication time: High bars represent early replication, and low bars represent late replication. 
Because this slot blot method measures the relative times of replication rather than the absolute 
times, the plot shows just the relative replication times (on they axis), with the microarray and slot 
blot results scaled to match. 

cient origins. The shoulders on the sides of 
peaks may indicate the locations of ineffi- 
cient origins; one example of a 2D gel anal- 
ysis detecting a weak origin from such a 
shoulder ( f in  Fig. 3A) is shown (Fig. 3B). 

Some discrepancies between the array 
data and previous reports were observed; for 
example, the array data predicted an origin at 
-235 kb on chromosome VI, where no origin 
had previously been reported. Although er- 
rors arising from poor hybridization signals 
or from assumptions made in the smoothing 
process (21) may lead to such discrepancies, 
they could also indicate genuine origins that 
had been missed previously. In the chromo- 
some VI example, 2D gel analysis of the 
directions of fork migration supports the pre- 
diction of the array data (22). 

Predicting replication times. Replica- 
tion times predicted by the microarray anal- 
ysis for several locations on chromosome X 
(a through d in Fig. 3A) were tested by slot 
blot analysis of CsCl density gradient frac- 
tions as described previously (18). In each 
case, the kinetics of replication predicted by 
the microarray data matched those detected 
by the standard slot blot method (Fig. 4A). As 
an additional test of the overall replication 
timing profile, the time of replication was 
assessed separately for -60 restriction frag- 
ments on chromosome X (23), which corre- 
spond to annotated open reading frames 
(ORFs) in the Saccharomyces Genome Data- 
base. The replication profile deduced from 
the microarray experiment closely matched 
the profile obtained from this slot blot exper- 
iment (Fig. 4B). 

Taken together, the success of the rep- 
lication profiles in predicting both general 
origin locations and relative times of repli- 
cation for different chromosomal segments 
demonstrates the viability of using microar- 
rays to map the topography of replication. 
At present, origin activity has been con- 
firmed only for origins predicted with high 
confidence levels (16). More precise as- 
signments of origin locations, especially 
for less efficient origins, will have to await 
several repetitions of the experiment. How- 
ever, the replication profiles will provide 
useful infohation even without precise 
and exhaustive identification of all origins, 
such as in the comparison of genotypes or 
culture conditions. 

Origin activation times. S phase in the 
microarray experiment spans an interval of 
-55 min. Although we have previously de- 
scribed origins as belonging to distinct "ear- 
ly" or "late" classes, this genome-wide anal- 
ysis reveals that origins really show a contin- 
uum of activation times (Fig. 5A). Most of 
the origin firings occur near mid-S. This ob- 
servation is consistent with measurements 
made on a randomly selected set of 24 origins 
(20) examined by our premicroarray assay 

118 5 OCTOBER 2001 VOL 294 SCIENCE www.sciencel 



R E S E A R C H  A R T I C L E S  

-30 kb from the right telomere of chromo- 
some V, the distance over which telomeres 
generally exert an effect had not been deter- 
mined previously. To map the telomere posi- 
tion effect more systematically, the distribu- 
tion of activation times of all predicted ori- 
gins located within a sliding 20-kb window 
was compared to that of all predicted origins 
in the genome. As the sliding window was 
moved inward from the chromosome ends, 
the average activation time of predicted ori- 
gins within the window approached that of 
the genomic average (Fig. 6C, top). The dif- 
ference in average activation time was statis- 
tically significant (P < 0.05) until the 20-kb 
window was centered -45 to 50 kb from the 
end (Fig. 6C, top), suggesting that the telo- 
mere position effect, on average, extends at 
least -35 kb. 

Because centromeres are replicated earlier 
than the bulk chromosomal sequences, we 
did a similar analysis for origins that flank 
centromeres. The average activation time for 
the 32 predicted origins flanking centromeres 
was found to be -5 min earlier than that of 
all other origins (P = 8.0 X As with 
the telomeres, this difference in activation 

A 
100 I I I I I I I 
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'10 	 15 20 25 30 35 40 45 50 

trep (min)
C

120 , I , , , , , , , ,
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(22). Each chromosome shows a range of 
origin activation times, with the distribution 
of activation times varying from chromosome 
to chromosome (Fig. 5B). As deduced earlier 
from DNA fiber autoradiography for mam- 
mals and yeast (1, 24), adjacent origins are 
generally activated at about the same time 
(Fig. 5C). 

No sequence elements that were absolute 
predictors of origin location were found; nor 
have we, so far, uncovered any DNA se-
quence determinants that allow the prediction 
of replication time. An obvious feature to 
examine with respect to origin activation time 
is base composition. The yeast genome has 
broad variations in base composition along 
the length of the chromosomes, with AT-rich 
and GC-rich isochores occurring with a peri- 
odicity of -50 kb (25). Although the l l-bp 
AT-rich ARS consensus sequence is expected 
to occur at elevated frequency in AT-rich 
isochores, there does not appear to be any 
correlation between base composition and ei- 
ther origin frequency or activation time (Fig. 
5, D and E). One measure of how closely the 
replication profiles are dictated by the under- 
lying DNA sequence is the extent of similar- 
ity between profiles for regions believed to 
have arisen from gene duplications. We were 
unable to detect any similarity in the replica- 
tion profiles for the largest reported blocks of 
duplicated sequence (26, 27). If the underly- 
ing DNA sequence does directly dictate the 
replication profile, the sequences in these 
blocks must have diverged enough to alter 
their replication profiles. 

Replication of centromeres and telo- 
meres. Consistent with previous observa- 
tions on a subset of centromeres and telo- 
meres (28), we find that centromeres are rep- 
licated earlier than subtelomeric regions [the 
most distal ORF sequences represented on 
the microarrays (Fig. 6A)l. The average rep- 
lication time of 10-kb windows containing 

time, when compared to the genomic aver- 
age, decreased at increasing distances from 
the centromeres (Fig. 6C, bottom): Predicted 
origins up to a distance of -25 kb from the 
centromeres showed a significantly earlier 
activation time than the genomic average. 
These observations raise the possibility that 
centromeres, like telomeres, may have a po- 
sition effect on origin activation. Consistent 
with this idea, introduction of a centromere 
close to one potential origin on a plasmid 
containing two identical ARS elements led to 
preferential activation of the origin closer to 
the centromere (31). 

Fork migration rates. The rates of fork 
migration were measured by taking absolute 
values of the slopes of the lines connecting 
peaks and valleys (that is, origins and termi- 
ni) in the replication profiles, ignoring the 
region immediately flanking each peak or 
valley (5 kb on either side), where local 
flattening of the curve introduces artifacts in 
the measurement of fork rates. As with origin 
activation times, a broad range of fork rates 
was observed (32), with a mean of 2.9 kblmin 
and a median of 2.3 kblmin (Fig. 7). These 
values are close to a previous estimate of fork 
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8 40replication of subtelomeric regions, on the 
other hand, is much later than the genomic 

LC 
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average (P = 2.4 X 10-16). However, sub- 
telomeric regions as a class are not the last 
sequences to be replicated; for instance, se- 
quences at -280 kb on chromosome IV are 
replicated later than many telomeres. The 
times of replication of the two ends of the 
same chromosome are highly correlated (Fig. 
6B), raising the possibility that intrachromo- 
soma1 telomere interaction (29) may influ- 
ence the time of origin activation. 

The average activation time for the set of 
most distal predicted origins is -5 min later 
than that of all other origins (P = 2.5 x 
lop4), consistent with the observation that 
telomeres cause late activation of origins 
placed in their vicinity (9, 29, 30). Although 
this position effect is known to extend at least 

0 o 3 6 9 1 2 1 5 1 8 2 ; 2 b 2 ~ 3 0 3 3  500 50 l oo  150 200 250 300 

Atrep (min) 	 Chromosome I l l  coordinate (kb) 
E 	 Fig. 5. Origin spacing and activation

10 1 I I I I 
times. (A) Distribution of activation times 

, of all predicted origins. (B) Distribution of 
-	 j origin activation times on two separate 

: chromosomes. (C) Difference in activa- 
tion time between pairs of adjacent ori- 
gins (D and I)Comparison of base corn- 
position and replication profiles. The base 
composition was calculated for a sliding 
window centered at locations 1 kb apart 

I I I I I 58 (47) for chromosome Ill (D) and VI (E).
0 50 100 150 200 250 The plots were generated using a sliding 

Chromosome VI coordinate (kb) window of 30 kb; window sizes ranging 
from 1 to 50 kb were also tried but did 

not reveal any correlations to origin location or replication time. 
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Fig. 6. Time of replication of centromeres and telomeres. (A) Distribution of replication times of 
centromere regions (CEN) and the most distal unique sequences represented on the oligonucleo- 
tide microarrays (TEL). (B) The times of replication of telomeres on the same chromosome. (Inset) 
Correlation in replication time between the left end and the right end of each chromosome. (C) 
Position effect on origin activation time. The plots show a comparison of the average activation 
time of predicted origins within a sliding 20-kb window centered at increments of 5 kb from 
chromosome ends (top panel) or centromeres (bottom panel). The difference in average t,, for 
origins within the window when compared to the average of all predicted origins is plotted (it,,,; 
open circles) along with the probability in each instance of the observed difference being due to 
chance (P value; solid circles). The dashed horizontal line shows the threshold P value of P = 0.05. 

migration rates made for isogenic cells grown 
under similar culture conditions [3.7 kbimin 
(I)]. Previously determined slow fork rates in 
two late-replicating regions [the right end of 
chromosome V and the left end of chromo- 
some I11 (10, 30, 33)] are confirmed by our 
microarray data. However, there is no general 
correlation between fork rate and the time in 
S phase when the forks are initiated. 

Differences in fork rates throughout the 
genome could result from some local proper- 
ty of the DNA sequence or chromatin struc- 
ture being replicated by a fork. Alternatively, 
qualitative differences in proteins assembled 
at different origins (such as minichromosome 
maintenance protein composition differenc- 
es) could result in different rates of fork 
movement. However, models proposing qual- 
itative differences between forks at different 
origins would have to accommodate the ob- 
servation that there are some origins where 
the leftward and rightward forks move at 
different rates (for example, compare the left 
and right slopes at the origin labeled "a" in 
Fig. 3, located at -300 kb on chromosome X, 
where the leftward fork is estimated to be 
moving at 3.9 kblmin and the rightward fork 
at 1.4 kblmin). We cannot rule out the possi- 
bility that some origins are unidirectional in a 

subset of the cells (32). If such origins exist, 
they could account for asymmetry in fork 
rates between leftward and rightward forks 
from an origin. 

Replication and transcription. A gen- 
eral correlation between transcription and 
replication has been observed in mammalian 
cells-genes that are actively transcribed are 
often replicated early in S phase (34)-and 
has led to the suggestion that replication tim- 
ing is one way for the cell to control tran- 
scription (35, 36). With one exception, we 
found no such correlation between transcrip- 
tion and replication time in yeast (37). The 
lone exception was the family of eight his- 
tone genes, which are replicated on average 
-10 min earlier than the genome average of 
31 min (P = 6 X lo-'). A limitation of our 
analysis is that we have only examined one 
growth regimen; it is possible that the pro- 
gram of replication changes when cells mod- 
ify their transcription profile to adapt to al- 
tered growth conditions. We anticipate that 
some version of the method described here, in 
combination with single molecule studies 
(38) and genome-wide analysis of transcrip- 
tion, will be especially useful in examining 
cellular responses to altered growth condi- 
tions (including the response to drugs such as 

Fork rate (kblmin) 

Fig. 7. Replication fork migration rates. Fork 
migration rates were calculated for regions 
between peaks and valleys in the replication 
profiles. The histogram shows the maximum 
estimate for fork rate within each peak-valley 
interval. 

hydroxyurea or DNA-damaging agents such 
as methylmethane sulfonate). 

For the future, we envision at least two 
immediate benefits of this approach. First, we 
are compiling a database of origin locations 
and activation times that will help identify 
consensus sequence elements affecting origin 
choice and activation time. Second, this 
method provides a powerful way of compar- 
ing the topography of chromosome replica- 
tion in different cell cultures: between cells of 
different genotypes (wild type versus mutant) 
and for cells of the same genotype under 
different growth conditions. 

We see no reason why this method [or 
related methods (39)] cannot be applied to 
other organisms, including cultured human 
cells. There is no requirement for sequenced 
genomes; all that is required is that an or- 
dered set of unique-sequence clones spaced at 
reasonable intervals be available for con-
structing microarrays and that some method 
of synchronizing cell populations and of den- 
sity-labeling the DNA be available. 
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