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Genome sequencing projects are producing linear amino acid sequences, 
but full understanding of the biological role of these proteins will require 
knowledge of their structure and function. Although experimental struc- 
ture determination methods are providing high-resolution structure infor- 
mation about a subset of the proteins, computational structure prediction 
methods will provide valuable information for the large fraction of se- 
quences whose structures will not be determined experimentally. The first 
class of protein structure prediction methods, including threading and 
comparative modeling, rely on detectable similarity spanning most of the 
modeled sequence and at least one known structure. The second class of 
methods, de novo or ab initio methods, predict the structure from se- 
quence alone, without relying on similarity at the fold level between the 
modeled sequence and any of the known structures. In this Viewpoint, we 
begin by describing the essential features of the methods, the accuracy of 
the models, and their application to the prediction and understanding of 
protein function, both for single proteins and on the scale of whole 
genomes. We then discuss the important role that protein structure 
prediction methods play in the growing worldwide effort in structural 
genomics. 

Modeling of a sequence based on known positions of conserved atoms from the tem- 
structures consists of four steps: finding plates to calculate the coordinates of other 
known structures related to the sequence to atoms (7 ) .  A third group of methods uses 
be modeled (i.e., templates), aligning the se- either distance geometry or optimization 
quence with the templates, building a model, techniques to satisfy spatial restraints ob-
and assessing the model (I). tained from the sequence-template alignment 

The templates for modeling may be found (8-10). There are also many methods that 
by sequence comparison methods, such as specialize in the modeling of loops (11) and 
PSI-BLAST (2) ,  or by sequence-structure side chains (12) within the restrained envi- 
threading methods (3) that can sometimes ronment provided by the rest of the structure. 
reveal more distant relationships than purely 
sequence-based methods. In the latter case, De nova Structure Prediction 
folh assignment and alignment are achieved Although comparative modeling is limited to 
by threading the sequence through each of the protein families with at least one known struc- 
structures in a library of all known folds. ture, de novo structure prediction has no such 
Each sequence-structure alignment is as- limitation. De novo methods start from the as- 
sessed by the energy of a corresponding sumption that the native state of a protein is at 
coarse model, not by sequence similarity as the global free energy minimum and carry out a 
in sequence comparison methods. large-scale search of conformational space for 

Comparative structure prediction produc- protein tertiary structures that are particularly 
es an all-atom model of a sequence, based on low in free energy for the given amino acid 
its alignment to one or more related protein sequence. The two key components of such 
structures. Comparative model building in- methods are the procedure for efficiently cany- 
cludes either sequential or simultaneous mod- ing out the conformational search and the free 
eling of the core of the protein, loops, and energy function used for evaluating possible 
side chains. In the original comparative ap- conformations. To allow rapid and efficient 
proach, a model is constructed from a few searching of conformational space, often only a 
template core regions and from loops and subset of the atoms in the protein chain is 
side chains obtained from either aligned or represented explicitly; the potential functions 
unrelated structures (4-6). Another family of must then include terms that reflect the aver- 
comparative methods relies on approximate aged-out effects of the omitted atoms and sol- 

vent molecules. 
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the protein chain flicker between different 
local structures consistent with their local 
sequence, and folding to the native state oc- 
curs when these local segments are oriented 
such that low free energy interactions are 
made throughout the protein (1 7). In simu- 
lating this process, each short segment is 
allowed to sample the local structures adopt- 
ed by the sequence segment in known protein 
structures, and a search is carried out through 
the combinations of these local structures for 
compact tertiary structures that bury the hy- 
drophobic residues and pair the P-strands. 
This strategy resolves some of the problems 
with both the conformational search and the 
free energy function: The search is greatly 
accelerated because switching between dif- 
ferent possible local structures can occur in a 
single step, and fewer demands are placed on 
the free energy function because the use of 
fragments of known structures ensures that 
the local interactions are close to optimal. 

Accuracy and Applications of Models 
The accuracy of a comparative model is re- 
lated to the percentage sequence identity on 
which it is based, correlating with the rela- 
tionship between the structural and sequence 
similarity of two proteins (Fig. 1) (1, 18, 19). 
High-accuracy comparative models are based 
on more than 50% sequence identity to their 
templates. They tend to have about 1 A root 
mean square (RMS) error for the main-chain 
atoms, which is comparable to the accuracy 
of a medium-resolution nuclear magnetic res- 
onance (NMR) structure or a low-resolution 
x-ray structure. The errors are mostly mis- 
takes in side-chain packing, small shifts or 
distortions of the core main-chain regions, 
and occasionally larger errors in loops. Me- 
dium-accuracy comparative models are based 
on 30 to 50% sequence identity. They tend to 
have about 90% of the main-chain modeled 
with 1.5 A RMS error. There are more fre- 
quent side-chain packing, core distortion, and 
loop modeling errors, and there are occasion- 
al alignment mistakes (18). Finally, low-ac- 
curacy comparative models are based on less 
than 30% sequence identity. The alignment 
errors increase rapidly below 30% sequence 
identity and become the most substantial or- 
igin of errors in comparative models. In ad- 
dition, when a model is based on an almost 
insignificant alignment to a known structure, 
it may also have an entirely incorrect fold. 
Accuracies of the best model building meth- 
ods are relatively similar when used optimal- 
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ly (19, 20). Other factors such as template 
selection and alignment accuracy usually 
have a larger impact on the model accuracy, 
especially for models based on less than 40% 
sequence identity to the templates. 

There is a wide range of applications of 
protein structure models (Figs. 1 and 2). For 
example, high- and medium-accuracy com- 
parative models frequently are helpful in re- 
fining functional predictions that have been 
based on a sequence match alone because 
ligand binding is more directly determined by 
the structure of the binding site than by its 
sequence. It is often possible to correctly 
predict features of the target protein that do 
not occur in the template structure. The size 
of a ligand may be predicted from the volume 
of the binding site clef? (Fig. 2A). For exam- 
ple, the complex between docosahexaenoic 
fatty acid and brain lipid-binding protein was 
modeled on the basis of its 62% sequence 
identity to the crystallographic structure of 
adipocyte lipid-binding protein (PDB code 
1ADL) (21). A number of fatty acids were 
ranked for their affinity to brain lipid-binding 
protein consistently with site-directed mu- 

tagenesis and affinity chromatography exper- 
iments, even though the ligand specificity 
profile of this protein is different from that of 
the template structure. Another example is 
prediction of a binding site for a charged 
ligand based on a cluster of charged residues 
on the protein, as was done for mouse mast 
cell protease 7 (Fig. 2B) (22). The prediction 
of a proteoglycan binding patch was con- 
firmed by site-directed mutagenesis and hep- 
arin-affinity chromatography experiments. 
Fortunately, errors in the functionally impor- 
tant regions in comparative models are many 
times relatively low because the functional 
regions, such as active sites, tend to be more 
conserved in evolution than the rest 
of the fold. The utility of low-accuracy com- 
parative models can be illustrated by a mo- 
lecular model of the whole yeast ribosome, 
whose construction was facilitated by fit- 
ting comparative models of many ribosom- 
al proteins into the electron microscopy 
map of the ribosomal particle (23). This 
example also suggests that structural 
genomics of single proteins or their do- 
mains, combined with protein structure pre- 

Fig. 1. Accuracy and 
application of protein 
structure models. 
Shown are the differ- 
ent ranges of applica- 
bility of comparative 
protein structure mod- 
eling, threading, and de 
novo structure predic- 
tion; the corresponding 
accuracy of protein 
structure models; and 
their sample applica- 
tions. (A through C). 
Sample comparative 
models based on about 
60% (A), 40% (B), and 
30% (C) sequence 
identity to  their tem- 
plate structure. (D and 
E) Examples of Rosetta 
de novo structure pre- 
dictions for the CASP4 
structure prediction 
experiment. Predicted 
structures are in red, 
and actual structures 
are in blue. The accura- 
cy of the models de- 
crease significantly in 
going from (A) to  (E), 
but the overall struc- 
ture is still roughly cor- 
rect. (D) A domain 
from the 81 1-residue 
MUtS protein which 
was recognized as an 
autonomous unit from 
an alignment of ho- 
mologous sequences; 
such parsing of large 
proteins into domains 
can make structure 

prediction more tractable. 

diction, may contribute substantially to ef- 
ficient structural characterization of large 
macromolecular assemblies. 

The accuracy and reliability of models 
produced by de novo methods is much lower 
than that of comparative models based on 
alignments with more than 30% sequence 
identity, but the basic topology of a protein or 
domain can in some cases be predicted rea- 
sonably well (Fig. l ,  D and E). For roughly 
40% of proteins shorter than 150 amino acids 
that have been examined, one of the five most 
commonly recurring models generated by 
Rosetta has sufficient global similarity to the 
true structure to recognize it in a search of the 
protein structure database. Reasonable mod- 
els can in some cases be oroduced for do- 
mains of even very large proteins by using 
multiple sequence alignments to identify do- 
main boundaries (Fig. ID). 

The accuracv of de novo models is too 
low for problems requiring high-resolution 
structure information. Instead, the low-reso- 
lution models produced by these methods can 
reveal structural and functional relationships 
between proteins not apparent from their ami- 
no acid sequences and provide a framework 
for analyzing spatial relationships between 
evolutionarily conserved residues or between 
residues shown experimentally to be func- 
tionally important. These applications are il- 
lustrated by examples from the recent CASP4 
blind protein structure prediction experiment 
(24, 25). The predicted structure of a protein 
involved in cell lysis (26) was found to be 
structurally related to a protein with a similar 
function but no significant sequence similar- 
ity (Fig. 2B). The predicted structure of a 
domain of the mismatch repair protein MutS 
(27) (Fig. ID) has structural similarity to 
proteins with related functions (28). Func- 
tionally important residues of the signaling 
protein Frizzled (29) were clustered in the 
predicted structure in a surface patch likely to 
be involved in a key protein-protein interac- 
tion (Fig. 2C). Thus, in favorable cases de 
novo predictions can provide some of the 
most important functional insights obtainable 
from experimentally determined structures. 

Modeling on a Genomic Scale 
Threading and comparative modeling methods 
have already been applied on a genomic scale 
(18, 30, 31). In total, domains in 58% of all 
600,000 known protein sequences were mod- 
eled with.ModPipe (18) and MODELLER (9) 
and deposited into a comprehensive database of 
comparative models, ModBase (32-34). The 
Web interface to the database allows flexible 
querying for fold assignments, sequence-struc- 
ture alignments, models, and model assessments 
of interest. An integrated sequence/structure 
viewer, Modview, allows inspection and anal- 
ysis of the query results. ModBase will be in- 
creasingly interlinked with other applications 
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and databases such that structures and other 
types of information can be easily used for 
functional annotation. Although the current 
number of modeled proteins may look impres- 
sive given the early stage of structural genomics, 
usually only one domain per protein is modeled 
(on the average, proteins have slightly more than 
two domains), and two-thirds of the models are 
based on less than 30% sequence identity to the 
closest template. 

Automation and large-scale modeling 
with de novo methods have lagged behind 
those of comparative modeling methods, be- 
cause of the relatively poor quality of the 
models produced and the relatively large 
amount of computer time required. However, 
inspired by the potential for functional in- 
sights, large-scale modeling calculations 
have been initiated with Rosetta. In the first 
such project, models for representatives of all 
PFAM families with less than 150 amino 
acids and currently not linked to proteins of 
known structure have been produced. Strong 
structural similarities of these models to 
structures of previously determined proteins 
can indicate previously unidentified relation- 
ships that may provide functional insights. It 
should soon be possible to extend these large- 
scale calculations to cover most of the do- 
mains not represented in ModBase. 

The Role of Protein Structure 
Prediction in Structural Genomics 
Structural genomics aims to structurally char- 
acterize most protein sequences by an effi- 
cient combination of experiment and predic- 
tion (35-37). This aim will be achieved by 
careful selection of target proteins and their 
structure determination by x-ray crystallogra- 
phy or NMR spectroscopy. There are a vari- 

ety of target selection schemes (38), ranging 
from focusing on only novel folds to select- 
ing all proteins in a model genome. A model- 
centric view requires that targets be selected 
such that most of the remaining sequences 
can be modeled with useful accuracy by com- 
parative modeling. Even with structural 
genomics, the structure of most of the pro- 
teins will be modeled, not determined by 
experiment. As discussed above, the accu- 
racy of comparative models and corre- 
spondingly the variety of their applications 
decrease sharply below the 30% sequence 
identity cutoff, mainly as a result of a rapid 
increase in alignment errors. Thus, we will 
need to determine protein structures so that 
most of the remaining sequences are related 
to at least one known structure at higher 
than 30% sequence identity (36,37). It was 
recently estimated that this cutoff requires a 
minimum of 16,000 targets to cover 90% of 
all protein domain families, including those 
of membrane proteins (36). These 16,000 
structures will allow the modeling of a very 
much larger number of proteins. For exam- 
ple, New York Structural Genomics Re- 
search Consortium measured the impact of 
its structures by documenting the number 
and quality of the corresponding models for 
detectably related proteins in the nonredun- 
dant sequence database. For each new 
structure, on average, -100 protein se- 
quences without any prior structural char- 
acterization could be modeled at least at the 
fold level (39). This large leverage of struc- 
ture determination by protein structure 
modeling illustrates and justifies the 
premise of structural genomics. 

De novo structure prediction will contrib- 
ute to structural genomics in several ways. 

Large-scale de novo prediction can guide tar- 
get selection by focusing experimental struc- 
ture determination on proteins likely to adopt 
novel folds. De novo methods should also be 
useful in complementing comparative model- 
ing methods by building portions of proteins 
not present in template structures. In addition, 
de novo methods supplemented by restraints 
from cross linking or other experiments can 
provide models for proteins not readily ame- 
nable to x-ray crystallographic or NMR anal- 
ysis. Finally, large-scale de novo modeling 
may allow coarse structure-based insights 
into protein function of a large number of 
proteins well in advance of experimentally 
determined structures. 

Conclusions 
Improvement in the accuracy of models pro- 
duced by both de novo and comparative mod- 
eling approaches will. require methods that 
finely sample protein conformational space 
using a free energy or scoring function that 
has sufficient accuracy to distinguish the na- 
tive structure from the nonnative conforma- 
tions. Despite many years of development of 
molecular simulation methods, attempts to 
refine models that are already relatively close 
to the native structure have met with relative- 
ly little success. This failure is likely to be 
due to inaccuracies in the potential functions 
used in the simulations, particularly in the 
treatment of electrostatics and solvation ef- 
fects. Improvements in sampling strategies 
may also be necessary, given the relatively 
long time scale of protein folding (millisec- 
onds to seconds). Combination of physical 
chemistry with the vast amount of informa- 
tion in known protein structures may provide 
a route to development of improved potential 

Fig. 2. Sample applica- A 
tions of protein struc- 
ture models. (A) A 
comparative model of 
a complex between 
docosahexaenoic fatty 
acid (violet) and brain 
Lipid-binding protein. 
Such models for a 
number of fatty acid li- 
gands were used to 
rank their binding af- 
finities (21). (B) A corn- 

- 

parative model of mouse mast cell protease 7, color-coded by the surface electrostatic 
potential This model facilitated identification of a proteoglycan binding site (22). (C) The de 
novo predicted structure of a protein that lyses bacteria (left) was found to be similar to the 
structure of a protein with a similar function (nk-lysin; right) despite a lack of significant 
sequence similarity between the two proteins. Such similarity between predicted structures 
and previously determined structures can provide clues about protein function in the 
absence of strong sequence homology. (D) The de novo predicted structure (left) of the 
signaling protein Frizzled is compared with the experimentally determined structure (right) 
(26) with the residues identified by mutagenesis to be involved in binding the WNTsignaling 
protein, indicated by gray spheres. The clustering of the putative functional residues at the 
right in the model and the true structure suggests that they form a contiguous protein- 
protein interaction site despite their lack of adjacency along the linear amino acid sequence. 
(C and D) Rosetta de novo predictions from CASP4; to faciliate comparison, the colors 
indicate position along the the chain from the NH, terminus (blue) to the COOH terminus (red). 
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functions. The refinement of de novo and 
comparative models provides a good test and 
application of the molecular dynamics meth- 
ods widely used to simulate biological mac- 
romolecules (40).  

Automated methods for deducing function 
from structure will be critical to obtaining func- 
tional insights from both predicted and experi- 
mentally determined structures. Considerable 
insight can be gained from structural compari- 
son of a given structure with all other known 
protein structures using methods such as Dali 
(41),which can frequently detect structural re- 
lationships with functional significance that are 
not evident from sequence comparisons. Also 
promising are methods that match a structure 
against a library of structural motifs associated 
with different functions (42-44). For higher res- 
olution models produced by comparative mod- 
eling methods. functional sites on proteins can 
potentially be identified and characterized by 
explicit ligand doclung calculations. Finally, 
large-scale protein-protein dockmg calculations 
in years to come may contribute to the identifi- 
cation and characterization of protein interaction 
networks. 
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Making Sense of Eukaryotic DNA 

Replication Origins 


David M. Gilbert 

DNA replication is the process by which cells make one complete copy of 
their genetic information before cell division. In bacteria, readily identifi- 
able DNA sequences constitute the start sites or origins of DNA replica- 
tion. In eukaryotes, replication origins have been difficult t o  identify. In 
some systems, any DNA sequence can promote replication, but other 
systems require specific DNA sequences. Despite these disparities, the 
proteins that regulate replication are highly conserved from yeast t o  
humans. The resolution may lie in a current model for once-per-cell-cycle 
regulation of eukaryotic replication that does not require defined origin 
sequences. This model implies that the specification of precise origins is a 
response t o  selective pressures that transcend those of once-per-cell-cycle 
replication, such as the coordination of replication wi th other chromo- 
somal functions. Viewed in this context, the locations of origins may be an 
integral part of the functional organization of eukaryotic chromosomes. 

although derived from prokaryotic and viral 
systems, there is no compelling reason to 
doubt that it will apply to all eukaryotic 
organisms. In fact, the proteins that regulate 
replication are highly conserved from yeast to 
humans. including the origin recognition 
complex (ORC). which binds directly to rep- 
lication origin sequences in budding yeast (1 ,  
2) .However. in several eukaryotic replication 
systems, it appears that any DNA sequence 
can function as a replicator. Those outside the 
field are often perplexed as to how investiga- 
tors of different eukaryotic systems can work 
with assumptions that range from very spe- 
cific to completely random origin sequence 
recognition, yet all agree on the basic mech- 
anism regulating DNA replication. This re- 
view summarizes our current understanding 
of eukaryotic replication origins and then pre- 
sents some simple guidelines to help demys- 
tify these seemingly disparate observations, 
providing a framework for understanding eu- 
karyotic origins that includes all existing 
data 

Transmission of genetic information from 
one cell generation to the next requires the 
accurate and complete duplication of each 
DNA strand exactly once before each cell 
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division. Typically, this process begins with 
the binding of an "initiator" protein to a 
specific DNA sequence or "replicator." In 
response to the appropriate cellular signals. 
the initiator directs a local unwinding of the 
DNA double helix and recruits additional 
factors to initiate the process of DNA repli- 

~ i l b ~ r t  cation. This paradigm describes most of the 
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