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A Cortical Area Selective for 
Visual Processing of 

the Human Body 
Paul E. ~owning,'* Yuhong ~iang? Miles  human? 

Nancy ~anwishe?.~ 

Despite extensive evidence for regions of human visual cortex that  respond 
selectively t o  faces, few studies have considered the  cortical representation of 
the appearance of the  rest of the human body. We present a series of functional 
magnetic resonance imaging (fMRI) studies revealing substantial evidence for 
a distinct cortical region in humans that  responds selectively t o  images of the 
human body, as  compared with a wide range of control stimuli. This region was 
found in the  lateral occipitotemporal cortex in all subjects tested and appar- 
ently reflects a specialized neural system for the visual perception of the human 
body. 

One of the most fundamental questions about that respond selectively to the appearance of 
visual object recognition in humans is wheth- the body, including the face (8-9). None of 
er all kinds of objects are processed by the these findings, however, provides conclusive 
same neural mechanisms, or whether instead evidence for a region in human visual cortex 
some object classes are handled by distinct selectively involved in processing the appear- 
processing "modules." The strongest evi- ance of human bodies. Here, we report a 
dence to date for a modular recognition sys- 
tem comes from the case of faces [(I). but see 
(2)] .  In contrast, relatively few studies have 
considered the mechanisms involved in per- 
ceiving the rest of the human body. Neuro- 
psychological reports suggest that semantic 
knowledge of human body parts may be dis- 
tinct from knowledge of other object catego- 
ries (3). In addition, functional neuroimaging 
studies have implicated regions of the supe- 
rior temporal sulcus (STS) in the perception 
of biological motion (4-6) and have associ- 
ated regions of left parietal and prefrontal 
cortices with knowledge about body parts 
(7). Finally, single-unit recording studies in 
monkeys have identified neurons in the STS 

'School of Psychology, Centre for Cognitive Neuro- 
science, Universitv of Wales, Bangor LL57 ZAS, UK. 

C. L. Collingrige, T. A. James. N. K. MacLeod. J. Physiol. 
(London) 2% 44P (1979). 
N. A Sharif et al., Neurochern. Int. 21, 69 (1992). 
J. D. Clements, R. A. Lester, C. Tong, C. E. Jahr, C. L 
Westbrook, Science 258, 1498 (1992). 
We thank B. P. Bean for his generous loan of equip- 
ment and comments on the manuscript, s. E. Leeman 
and C. C. Blasdel for many helpful editorial sugges- 
tions, and U. C. Drager and R. C. Feldman for invalu- 
able help at the beginning of this project. Supported 
by a fellowship from the John Nicholl fund (K.LB.), a 
"Studienstiftung des deutschen Volkes" scholarship 
(B.H.F.), and grants from the APDA and NIH (R01- 
3445) (I.M.M.). 

4 June 2001; accepted 2 August 2001 

series of fMRI studies that provide the first 
evidence for such a region. 

Subjects in these experiments were 
scanned while viewing images of objects 
from several different categories. In 19 out of 
19 subjects scanned, we found a region in the 
right lateral occipitotemporal cortex (Fig. 1) 
that produced a significantly stronger re- 
sponse when subjects viewed still photo- 
graphs of human bodies and body parts than 
when they viewed various inanimate objects 
and object parts (10). We have provisionally 
named this candidate body-selective region 
the "extrastriate body area" or EBA (11). 
After identifying the EBA in each subject 
with these "localizer" scans, we then ran a 
new set of experimental scans in the same 
session, in order to measure the response of 
the EBA to a large number of other stimulus 
categories (Figs. 2 and 3). This procedure 
enabled us to characterize the response pro- 
file of this region to a variety of different 
kinds of visual stimuli (12) in order to test a 
number of alternatives to our hypothesis that 
the EBA is selectively involved in visual 
processing of the human body. 

ZDepartment of Gain and cognitive Sciences, Massa- 
chusetts Institute of Technology. Cambridge. MA Fig. 1. EBA activations in three individual subjects. Each row shows coronal anatomical slices from 
02139, USA. 3MassachusettsCeneralHos~itabNucle- a single subject, arranged from posterior (left) to anterior (right), overlaid with a statistical map 
ar Magnetic Imaging Center, 149 13th showing voxels that were significantly more active for human bodies and body parts than for 
Street. Charlestown. MA 02129, USA. objects and object parts. The EBA is visible in the right occipitotemporal cortex of each subject 
*To whom correspondence should be addressed. E- (arrows); in some subjects an activation was also observed in the corresponding location of the left 
mail: p.downing@bangor.ac.uk hemisphere. Scale indicates P value of activations in colored regions. 
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In experiment 1, the response [percent 
increase in the MR signal (13) in the EBA] to 
human body parts (1.3%) and face parts 
(1.0%) was significantly greater than that to 
object parts (0.5%; P < 0.001 in each con- 
dition). It is noteworthy that the response to 
whole faces (0.6%) was significantly lower 
than to face parts (P < 0.01) and body parts 
(P < 0.001) and no greater than that to whole 
objects (0.5%; P > 0.20) (14). Experiment 2 
revealed that the response to hands (1.4%) 
did not differ from that to assorted body parts 
(1.4%). In experiment 3, the response to hu- 
man bodies (1.9%) was greater than that to 
human body parts [1.2%; P < 0.025 (15)], 
which in turn was greater than that to object 
parts [0.4%; P < 0.005 (16)l. Thus, relative 
to the control conditions, the EBA responded 
strongly and selectively to a variety of pic- 
tures of human bodies and body parts, with 
the single exception of faces. 

In order to minimize differences between 
body and nonbody stimuli on low-level im- 
age properties such as texture, shading, and 
spatial frequency composition, we measured 
the response of the EBA to line drawings. In 
experiment 2, the EBA response to body 

Fig. 2. Stimulus exam- 
ples. The EBA response 
was high to human 
body parts (A) and 
whole human bodies 
(B) whether presented 
as photographs, line 
drawings (C), stick fig- 
ures (D), or silhou- 
ettes (E), and was not 
attenuated to images 
that depict little im- 
plied motion (F). The 
low response to whole 
faces (C) was the sin- 
gle exception found to 
the preference for hu- 
man bodies. In con- 
trast, the EBA re- 
sponse was signifi- 
cantly lower to object 
parts (H) and whole 
articulated objects (I), 
whether represented 
as photographs or line 
drawings (J), as well as 
to scrambled control 
versions of stick fig- 
ures (K) and silhou- 
ettes (1). The respons- 
es to face parts (M) and 

parts was greater than to object parts, whether 
represented as line drawings (P  < 0.005) or 
as photographs (P  < 0.001). Similarly, in 
experiment 4 we found a significantly greater 
response to entire bodies (1.6%) than to cars 
(0.7%; P < 0.01), whether they were present- 
ed as line drawings or photographs (1 7). To 
further rule out low-level visual confounds, 
in experiment 6 we tested the EBA response 
to stick figure representations and silhouettes 
of human bodies, compared with scrambled 
versions of the same stimuli. The response to 
stick figures (1.7%) was significantly higher 
than that to the control items (1.0%; P < 
0.01). Likewise, the response to human sil- 
houettes (1.8%) was greater than that to 
scrambled versions (1.0%; P < 0.05). Final- 
ly, experiment 5 showed that the EBA does 
not respond generally to any object that, like 

parts connected at flexible joints. The EBA 

=i the human body, is composed of rigid sub- '3 8L m 
response to common articulated inanimate 
objects such as scissors (0.7%) was signifi- 

to mammals (N) were intermediate. 

c&tly lower than to bodies '(1.5%; > < 
0.005) and body parts ( 1.3%; P < 0.005) and 
did nit differ from that'to object parts (0.7%). 
We conclude that the selectivity of the EBA 
for body stimuli is not due to differences in 
the surface or structural properties of the 
stimuli (18). 

Previous reports [e.g. (19)] have shown 
greater responses to animals than tools in a 
region near the EBA (in addition to an acti- 
vation in the lateral fusiform gyms), raising 
the question of whether the EBA is more 
generally responsive to all animals, rather 
than specifically to humans. In experiment 3, 
the response to nonhuman mammals (1.0%) 

Fig. 3. Grand mean activation time courses from experiments 1 to 6 [(A) to (F), respectively]. Each 
block is indicated with a color band; repetitions of conditions within a scan are indicated by shared 
color. Data are in terms of percent signal change from fixation baseline (shown in gray). All data 
were extracted from regions of interest defined in independent scans, in each subject, within a 
session. Conditions in all experiments are Labeled as follows (some conditions superceded by other 
analyses are not discussed here): OP, object parts; BP, human body parts; FACE, faces; HAND, hands. 
(A) FP, face parts; SCENE, outdoor scenes; WO, whole objects; SO, scrambled objects. (B) L-OP, Line 
drawings of object parts; L-BP, line drawings of body parts; MOV, oscillating low-contrast rings; 
STAT, static low-contrast rings. (C) HUM-F, human bodies, without faces; MAM-F, mammal bodies, 
without faces. (D) P-CAR, photographs of can; L-CAR, line drawings of cars; PA-HUM, photographs 
of alert humans; LA-HUM, Line drawings of alert humans; PI-HUM, photo of inactive humans; 
LI-HUM, line drawings of inactive humans. (E) HUM-F, human bodies, without faces; MAM, 
mammals; BIRD, birds; FISH, fish; TREE, trees; AO, articulated objects. (F) F-CL, filled clothes; E-CL, 
empty clothes; SIL, human silhouettes; STICK, human stick figures; S-SIL, scrambled silhouettes; 
S-STICK, scrambled stick figures. 
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was significantly lower than that to humans 
(1.9%; P < 0.01) and human body parts 
(1.2%; P < 0.05), but greater than that to 
object parts (0.4%; P < 0.001). In experiment 
5, we tested several animal categories, reveal- 
ing that the responses to nonhuman mammals 
(1.0%), birds (0.9%), and fish (0.8%) were all 
significantly below that to human bodies 
(1.5%; P < 0.01, P < 0.005, P < 0.005, 
respectively). Further, the response to mam- 
mals was only marginally higher than that to 
articulated objects (0.7%; P < 0.08), and this 
difference was not significant for birds or 
fish. Thus the EBA responds selectively to 
humans as opposed to other animals, with a 
possible modest preference for nonhuman 
mammals as opposed to other animal catego- 
ries. However, this region is clearly not se- 
lective for the category of animals in general. 

To fiuther assess the relationship between 
the EBA and other visually selective cortical 
regions (Fig. 4), we tested for anatomical 
overlap (20) between the EBA and the fol- 
lowing: retinotopic cortex (21), the hsiform 
face area (FFA) (22), the parahippocampal 
place area (PPA) (23), the lateral occipital 
complex (LOC) (24), and the visual motion 
area MTN5 (25). We found no anatomical 
overlap between the EBA and retinotopic 
cortex, the FFA, or the PPA, as functionally 
defined in each subject individually. In some 
subjects, the EBA overlapped partially with 
either area MT or LOC (26). However, in 11 

Fig. 4. Coronal slices from a sin- 
gle subject, arranged from pos- 
terior (top Left) to anterior (bot- 
tom right), showing the EBA, 
FFA, MT, LOC, PPA, and face- 
selective region of STS, all iden- 
tified within a single scanning 
session. Colored voxels are those 
which reached significance (P < 
lo-') in a standard localizer 
scan for each region; regions of 
overlap are not indicated. 

out of 1 1 subjects, a set of voxels was unique- 
ly activated in the EBA localizer and not in 
either the MT or LOC localizers (mean 1.5 
cm3, SEM 0.33 cm3). Thus, the EBA is clear- 
ly distinct from these other previously de- 
scribed visual regions (27). 

In conclusion, our results reveal a region 
in human lateral occipitotemporal cortex that 
responds selectively to visual images of hu- 
man bodies and body parts, with the excep- 
tion of faces. These findings suggest that the 
EBA is a specialized system for processing 
the visual appearance of the human body. At 
present, we can only speculate on the precise 
functional role of the EBA. It may be in- 
volved in the identification of individuals, 
perhaps under conditions in which face rec- 
ognition is not possible (e.g., when the face is 
not visible because of viewing direction, dis- 
tance, occlusion, poor lighting, and so on). 
Alternatively, the EBA may be critical for 
perceiving the position andlor configuration 
of another person's body, perhaps as part of a 
broader system for inferring the actions and 
intentions of others. Finally, it may be in- 
volved in perceiving the configuration of 
one's own body, for example in the guidance 
of actions. 

In its strong selectivity for a specific ob- 
ject category, the EBA resembles other pre- 
viously identified regions of human extrastri- 
ate cortex such as the FFA and the PPA. 
Although all three respond somewhat to non- 

preferred stimuli, each shows a general and 
strongly selective response to stimuli from its 
preferred category. The existence of these 
category-selective regions in human extrastri- 
ate cortex supports the hypothesis that high- 
level vision is not accomplished by a single 
functionally undifferentiated system. Rather, 
visual perception and cognition appear to be 
served by distinct mechanisms for at least a 
select few categories, including faces, places, 
and bodies. 

How many category-specific regions like 
the EBA exist in human extrastriate cortex? In 
ongoing studies, we have tested a wide range of 
other object categories and have so far found no 
compelling evidence for other category-selec- 
tive regions in occipitotemporal cortex. This 
result suggests that objects from many catego- 
ries may be represented by a "general-purpose" 
recognition system, a role proposed for the 
lateral occipital complex (28, 29). Perhaps the 
most fundamental unanswered question about 
category-selective regions in human extrastriate 
cortex concerns the origins of these structures. 
Are the FFA, PPA, and EBA largely specified 
in the genome, or do these regions primarily 
derive from the extensive lifetime exoerience 
an individual has with faces, places, and bod- 
ies? Methodological advances now being de- 
veloped may enable us to answer even these 
most challenging questions about the organiza- 
tion and origins of object representations in the 
human brain. 
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