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speculate that the 30-ky cycle is restricted to 
the tropical Indo-Pacific Ocean (14), because 
the ENS0 is characteristic of that area. How- 
ever, the CO, record from the Vostok ice core 
also reveals a 30-ky cycle (30). Cross-spec- 
tral analyses indicate that the productivity 
series are highly coherent with the CO, 
record at the 30- and 23-ky periods, and that 
low CO, values are associated with high 
productivity (Fig. 3) (6).It is therefore pos- 
sible that, with primary production acting as a 
significant sink in the carbon cycle, the 30-ky 
record in global CO, is the signature of 
ENSO-like control of biological production 
in the equatorial Indo-Pacific. This is consis- 
tent with a significant role of the low-latitude 
biological pump in controlling atmospheric 
CO, concentrations (31). 

We have identified two independent 
forcings responsible for 60% of the long- 
term equatorial Indo-Pacific productivity 
dynamics. The first forcing concerns the 
response of the depth of the equatorial ther- 
mocline to global climatic variations. The 
second forcing is related to changes in the 
equatorial east-west thermocline tilt and is 
linked to the 23-ky period of Earth's pre- 
cession. This precession-related variability 
could reflect the influence of low-latitude 
insolation on ENSO, as a predictive ENS0 
model stipulates (16). A similar dual "pre- 
cession-glacial" forcing has been described 
recently on New Guinea corals (32). The 
23-ky signal precedes ice volume varia-
tions by about 2 ky. Thus, long-term ENS0 
dynamics provide a possible causality for 
the growing body of evidence that low-
latitude climates are early responders to 
orbital forcing (9, 10, 22, 33-35). Although 
minor, a 30-ky period is also evidenced. It 
is characteristic of the equatorial Indo-Pa- 
cific coherent with a similar period found 
in Vostok CO, record. That coherency at- 
tests to the importance of biological carbon 
fixation in the equatorial Indo-Pacific in 
controlling variations of atmospheric CO,. 
Therefore, because of its early response and 
its possible effect on the carbon cycle, the 
23-ky ENSO-like cycle is likely to have 
played a significant role in global climate 
dynamics. 
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Embryonic Skulls of Titanosaur 
Sauropod Dinosaurs 

Luis M. Chiappe,'* Leonardo algad do,^ Rodolfo A. Coria3 

Little is known about the cranial anatomy of the taxonomically diverse and 
geographically widespread titanosaurs, a paucity that has hindered inferences 
about the genealogical history and evolutionary development of the latest 
sauropod dinosaurs. Newly discovered fossil eggs containing embryonic re-
mains from the Late Cretaceous of Argentina provide the first articulated skulls 
of titanosaur dinosaurs. The nearly complete fetal skulls shed light on the 
evolution of some of the most notable cranial features of sauropod dinosaurs, 
including the retraction of the external nares, the forward rotation of the 
braincase, and the abbreviation of the infraorbital region. 

Chiappe et al. ( 1 )  reported embryonic re- 
mains of sauropod dinosaurs from incom- 
plete skull remains from the Late Creta- 
ceous nesting site of Auca Mahuevo (Pat- 
agonia, Argentina) (2). Six newly discov- 
ered eggs from this site containing 
exquisitely preserved skulls provide nearly 
complete and articulated cranial material of 
sauropod embryos (3, 4). The subtriangular 
skulls (Fig. 1) have large, circular orbits 
exceeding one-third of the cranial length. A 
large, triangular antorbital fenestra perfo-

rates the short whose margin
is slightly stepped. A tall rem maxilla broad-
ly sutures to a robust maxilla bearing slen- 
der and cylindrical teeth. The enamel of the 
tooth crowns is smooth and devoid of ser- 

rations. The dentigerous portion of the 
maxilla occupies the rostral half of the 
element. The maxilla defines the rostral 
margin of a large ventral notch (Fig. 1A). 
which is caudally bound by the jugal and 
the quadratojugal. A similar large, ventral 
notch was reported for the Malagasy titano- 
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saur Rapetosarirus krausei (5). The lacri- 
mal is rostrodorsally inclined at a 45' an- 
gle, differing from the subvertically to cau- 
dodorsally oriented lacrimal of adult sauro- 
pods ( 6 ) .  The jugal is rostrocaudally long 
and, in contrast to adult sauropods, takes 
part in the ventral margin of the skull (Fig. 
1). The inverted L-shaped postorbital bears 
a long and slender, rostrally slanting jugal 
process. Scleral plates are preserved inside 
the orbit of some specimens (e.g., MCF- 
PVPH-147, MCF-PVPH-272). The long, 
distally expanded rostral process of 
the quadratojugal extends to the middle of the 
orbit. Its dorsal process is short, without con- 
tacting the squamosal. The elongate and ros- 
troventrally inclined infratemporal fenestra 
has a central constriction. Its ventral end 
barely underlies the caudoventral corner of 
the orbit. The quadrate is rostroventrally in- 
clined at an angle of about 130' from the 
horizontal. This and the equivalent inclina- 
tion of the squamosal (Fig. 1) suggest some 
degree of braincase rostral rotation. The 
width of the frontal and parietal (4) indicates 
that the embryos had a broad skull, with a 
width greater than half of its length. The 
lower jaw is low, especially in its rostral 
portion. Its caudal half is excavated by a large 
fenestra, unusual among sauropods (7). 

Previously reported embryos from Auca 
Mahuevo (8) revealed characters support- 
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ing their identification as neosauropods 
within eusauropod dinosaurs (9). This phy- 
logenetic hypothesis is corroborated by the 
newly discovered specimens. Anatomical 
information added by the new embryonic 
skulls includes several eusauropod synapo- 
morphies (e.g., a snout with stepped rostral 
margin, a rostrally extended quadratojugal, 
the lack of quadratojugal-squamosal con- 
tact, and absence of an antorbital fossa) 
(lo), as well as other derived characters di- 
agnostic of neosauropods (e.g., postorbital 
bar broader transversely than rostrocaudally) 
(10). In addition, this new anatomical infor- 
mation clarifies the embryonic identification 
beyond Neosauropoda. The low rostral por- 
tion of the mandible is a derived feature 
known for the titanosaurs R. krausei (5), Ant- 
arctosaurus wichmannianus (11, 12), and an 
undescribed, nearly complete skeleton from 
the Rio Colorado Formation of Patagonia 
(13)-the same formation containing the em- 
bryos reported here. Furthermore, the ex- 
treme width of the skull and the presence of a 
large mandibular fenestra are derived charac- 
ters also reported for the latter titanosaur (13), 
and a distinct ventral notch similar to that 
found caudal to the maxillary dentigerous 
margin of the embryos is present in R. krausei 
(5). These apomorphic similarities suggest 
that the Auca Mahuevo embryos are titano- 
saur sauropods (14). 

Titanosaur skulls are very incompletely 
known (15-17). The specimens reported 
here are the first articulated skulls of this 
widespread sauropod clade. Notwithstand- 
ing their young ontogenetic age, anatomical 
information available in these embryos il- 
luminates aspects paramount to sauropod 
skull evolution such as the retraction of the 
external nares, the forward rotation of the 
braincase, and the shortening of the infraor- 
bital region. 

The external nares are partially (e.g., Ca- 
marasaurus lentus, Brachiosalirus brancai) 
to completely (e.g., diplodocids, titanosaurs) 
retracted in all eusauropods (5, lo), and the 
lacrimal-which roughly marks the narial 
caudal end-is oriented vertically or slightly 
caudally. It has been suggested (1 7) that the 
retraction of the nares could have been cou- 
pled to the braincase rostral rotation typical 
of diplodocids (7) and some titanosaurs (5, 
13), a modification that orients ventrally the 
occipital condyle. In the Auca Mahuevo em- 
bryos, the presence of dorsorostrally oriented 
lacrimals (Fig. 1, A and B) and frontals that 
nearly reach the rostral margin of the orbit 
(Fig. 1B) indicates that the caudal margin of 
the external nares laid in front of the orbit, 
with the narial opening dorsorostral to the 
antorbital fossa. Yet, the orientation of the 
quadrate and squamosal suggests some de- 
gree of braincase rotation. As with other 

Fig. 1. Embryonic titanosaur 
skulls from Auca Mahuevo 
in left lateral view (photo- 
graph and interpretive draw- 
ing). (A) MCF-PVPH-272. (B) 
MCF-PVPH-263. Abbrevia- 
tions: af: antorbital fenestra; 
an: angular; d: dentary; f: 
frontal; itf: infratemporal 
fenestra; j: jugal; la: lacrimal; 
m: maxilla; mf: mandibular 
fenestra; orb: orbit; p: pari- 
etal; pmx: premaxilla; po: 
postorbital; prf: prefrontal; 
pt: pterygoid; q: quadrate; qi: 
quadratojugal; scp: scleral 
plates; sq: squamosal; stf: 
supratemporal fenestra. 
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primitive features of the embryos (e.g., short 
snout, circular orbit, and elongated jugal), it 
is possible that the position of their nares 
migrated backwards during ontogeny. The 
extent to which ontogenetic development 
could have affected the partially to minimally 
retracted nares of the embryos is uncertain 
because their position (either partially or fully 
retracted) remains unclear for most adult tit- 
anosaurs (1'5, 1'6), but in the newly described 
R. krcrusei, the external nares are placed on 
the top of the skull (5). The new embryonic 
evidence contradicts previous ideas coupling 
narial retraction to quadrate and braincase 
rostral rotation, which need not have evolved 
in concert (16). 

Another notable transformation of the cra- 
nial architecture of sauropod dinosaurs is the 
abbreviation of the infraorbital region char- 
acteristic of neosauropods (6).  In these dino- 
saurs, the jugal is short and does not contrib- 
ute to the ventral margin of the skull. It has 
been suggested (1'0) that the evolution of this 
apomorphic position of the jugal could have 
been correlated to the infraorbital shortening 
experienced by these sauropods. The partici- 
pation of the jugal in the ventral margin of the 
new embryonic skulls, whose orbital region 
is unabbreviated (Fig. l), is congruent with 
this suggestion. 

The discovery of the new embryonic sau- 
ropod skulls provides another example of 
how developmental data inform our under- 
standing of evolutionary events (18). The 
new ontogenetic evidence suggests that 
whereas the narial retraction and braincase 
rotation of the sauropod skull likely evolved 
independently from each other, the infraorbit- 
a1 abbreviation and the exclusion of the jugal 

from the ventral margin of the skull could 
have evolved in concert. 
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Although breeding success is known t o  increase with group size in several 
cooperative mammals, the mechanisms underlying these relationships are un- 
certain. We show that in  wild groups of cooperative meerkats, Suricata suricatta, 
reductions in  the ratio of helpers t o  pups depress the daily weight gain and 
growth of pups and the daily weight gain of helpers. Increases in the daily weight 
gain of pups are associated wi th  heavier weights at independence and at  1year 
of age, as well as wi th  improved foraging success as juveniles and higher survival 
rates through the first year of life. These results suggest that the effects of 
helpers on the fitness of pups extend beyond weaning and that helpers may gain 
direct as well as indirect benefits by feeding pups. 

In social mammals whose young are reared es in large groups, and breeding success ei- 
principally by their parents and are rarely (or ther declines with increasing group size or 
never) fed directly by other group members, shows no consistent relation to it (1, 2). In 
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success and group size are common in social 
mammals whose young are reared by helpers 
(3-8). Although these correlations suggest 
that the presence of helpers benefits juveniles 
in cooperative species, the ecological and 
behavioral mechanisms underlying them are 
poorly understood, and group size could af- 
fect several different processes that influence 
juvenile survival, including predation. infan- 
ticide, and starvation (3). 

Like other social mammals whose young 
receive much of their food from helpers, ju- 
venile survival increases in larger groups of 
Kalahari meerkats, Slrricutu .slrricuttu ( Y ) .  
This cooperative mongoose lives in groups of 
2 to 30, consisting of a dominant male and 
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