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Table 1. Parallels between genome sequencing tory network, a graphical model can play the mantic information in computational form. 
and genetic network discovery. 

Genome 
sequencing 

Genome semantics 

Physical maps Graphical model 
Contigs Low-level functional 

models 
Contig Module assembly 

reassembly 
Finished genome Comprehensive model 

sequence 

DNA to be sequences into distinct pieces, 
parcel out the detailed work of sequencing, 
and then reassemble these independent ef- 
forts at the end. It is not quite so simple in the 
world of genome semantics. 

Despite the differences between genome se- 
quencing and genetic network discovery, there 
are clear parallels that are illustrated in Table 1. 
In genome sequencing, a physical map is useful 
to provide scaffolding for assembling the fm-
ished sequence. In the case of a genetic regula- 

same role. A graphical model can represent a 
high-level view of interconnectivity and help 
isolate modules that can be studied indepen- 
dently. Like contigs in a genomic sequencing 
project, low-level functional models can ex- 
plore the detailed behavior of a module of genes 
in a manner that is consistent with the higher 
level graphical model of the system. With stan- 
dardized nomenclature and compatible model- 
ing techniques, independent functional models 
can be assembled into a complete model of the 
cell under study. 

To enable this process, there will need to 
be standardized forms for model representa- 
tion. At present, there are many different 
modeling technologies in use, and although 
models can be easily placed into a database, 
they are not useful out of the context of their 
specific modeling package. The need for a 
standardized way of communicating compu- 
tational descriptions of biological systems ex- 
tends to the literature. Entire conferences 
have been established to explore ways of 
mining the biology literature to extract se-

Going forward, as a community we need 
to come to consensus on how to represent 
what we know about biology in computa- 
tional form as well as in words. The key to 
postgenomic biology will be the computa- 
tional assembly of our collective knowl- 
edge into a cohesive picture of cellular and 
organism function. With such a comprehen- 
sive model, we will be able to explore new 
types of conservation between organisms 
and make great strides toward new thera- 
peutics that function on well-characterized 
pathways. 
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Machine Learning for Science: State of the 

Art and Future Prospects 


Eric Mjolsness* and Dennis DeCoste 

Recent advances in  machine learning methods, along wi th successful 
applications across a wide variety of fields such as planetary science and 
bioinformatics, promise powerful new tools for practicing scientists. This 
viewpoint highlights some useful characteristics of modern machine learn- 
ing methods and their relevance t o  scientific applications. We conclude 
wi th some speculations on near-term progress and promising directions. 

Machine learning (ML) (I) is the study of 
computer algorithms capable of learning to im- 
prove their performance of a task on the basis of 
their own previous experience. The field is 
closely related to pattem recognition and statis- 
tical inference. As an engineering field, ML has 
become steadily more mathematical and more 
successful in applications over the past 20 
years. Learning approaches such as data clus- 
tering, neural network classifiers, and nonlinear 
regression have found surprisingly wide appli- 
cation in the practice of engineering, business, 
and science. A generalized version of the stan- 
dard Hidden Markov Models of ML practice 
have been used for ab initio prediction of gene 
structures in genomic DNA (2). The predictions 
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correlate surprisingly well with subsequent 
gene expression analysis (3). Postgenomic bi- 
ology prominently features large-scale gene ex- 
pression data analyzed by clustering methods 
(4,a standard topic in unsupervised learning. 
Many other examples can be given of learning 
and pattern recogmtion applications in science. 
Where will this trend lead? We believe it will 
lead to appropriate, partial automation of every 
element of scientific method, from hypothesis 
generation to model construction to decisive 
experimentation. Thus, ML has the potential to 
amplify every aspect of a working scientist's 
progress to understanding. It will also, for better 
or worse, endow intelligent computer systems 
with some of the general analytic power of 
scientific thinking. -

Machine Learni~ ng at Every Stage of 
the Scientific Process 
Each scientific field has its own version of the 
scientific process. But the cycle of observing, 

creating hypotheses, testing by decisive exper- 
iment or observation, and iteratively building 
up comprehensive testable models or theories is 
shared across disciplines. For each stage of this 
abstracted scientific process, there are relevant 
developments in ML, statistical inference, and 
pattem recognition that will lead to semiauto- 
matic support tools of unknown but potentially 
broad applicability. 

Increasingly, the early elements of scientific 
method-observation and hypothesis genera- 
tion-face high data volumes, high data acqui- 
sition rates, or requirements for objective anal- 
ysis that cannot be handled by human percep- 
tion alone. This has been the situation in exper- 
imental particle physics for decades. There 
automatic pattern recogmtion for significant 
events is well developed, including Hough 
transforms, which are foundational in pattern 
recognition. A recent example is event analysis 
for Cherenkov detectors (8) used in neutrino 
oscillation experiments. Microscope imagery in 
cell biology, pathology, petrology, and other 
fields has led to image-processing specialties. 
So has remote sensing from Earth-observing 
satellites, such as the newly operational Terra 
spacecraft with its ASTER (a multispectral 
thermal radiometer), MISR (multiangle imag- 
ing spectral radiometer), MODIS (imaging 
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spectrometer), and other high-data-rate instru- human surveys of Mars orbital imagery yield- Step 2: Generate hypotheses. Many data- 
ments that will require pattern recognition for ing tens of thousands of cataloged, character- clustering algorithms may be treated as fitting 
signal extraction and change detection to reach ized features including impact craters, faults, vector data to a mixture of simpler probability 
their full potential. The Mars Global Surveyor and ridges. If the tedious aspects of this work distributions such as Gaussians, one per cluster. 
spacecraft and its MOC (2- to 10-dpixel visi- could be vastly accelerated and made objective Figure 1 shows an example of a muscle cluster 
ble light camera), MOLA (laser altimeter), and by automation, then feature relationships and of 81 genes culled from hierarchical Expecta- 
TES (thermal emission spectrometer) instru- impact crater counts could be used to order and tion Maximization clustering analysis [as in 
ments, along with three new spectrometers 
(THEMIS, GRS, and MARE) to arrive shortly 
aboard the 2001 Mars Odyssey spacecraft, are 
now providing comprehensive views of another 
planet at high data volume, which will also 
stretch human analytic capabilities. 

Step I: Observe and explore interesting 
phenomena. Visualization and exploration of 
highdimensional vector data are the focus of 
much current ML research. For example, one 
promising class of approaches involves dimen- 
sionality reduction: reducing data from many 
original dimensions (e.g., thousands of gene 
expression measurements) to just a few dimen- 
sions in some new space (e.g., two or three 
dimensions, for. easy visualization on computer 
displays). This includes classic methods, such 
as principal component analysis PCA) and 
multidimensional scaling, as well as many 

date geological units with much finer spatial 
and temporal resolution than is now possible. In 
fact, the stratigraphic record could be objective- 
ly reanalyzed at high resolution. Recent steps 
toward this goal involve leaming and pattern 
recognition. Trainable classifiers for geomor- 
phological features were initially based on sim- 
ple Gaussian models for orbital image data (13) 
and later improved with PCA (14) and support 
vector machines (15). So far the most accurate 
feature detector models bare little resemblance 
.to the process models describing the formation 
of those geological features. , 

Simulation observations are also a fruithl 
but largely untapped source of data for ML 
techniques. For example, high-quality particle 
simulators of planetary and comet formations 
[e.g., (1611 generate vast amounts of data, for 
which careful manual examination is usually 

(II)] of a C2C12 mouse muscle differentiation 
time course m i c r o ~ y ,  involving about 9000 
genes (13). This cluster was hand-picked by 
browsing a cluster hierarchy at the top level to 
pick out genes up-regulated over the time 
course and at the second level to pick out genes 
whose pattern of induction was tightly correlat- 
ed. Biological inspection of this gene list re- 
veals known transcriptional regulators of mus- 
cle differentiation as well as their downstream 
target genes, which include classic markers of 
muscle differentiation. Clones for which no 
function could be attributed (of which there 
were 15) become candidates for a role in regu- 
lation or execution of muscle differentiation. 
On the basis of the assumption that genes that 
fall into the same expression cluster are partic- 
ularly likely to share function, this provides a 
basis for guiding model formulation for genes 

promising new ones, such as kernel principal infeasible. Semiautomated exploration of this with no known function. Thus, such clus&ring 
component analysis (9, independent compo- data, such as detecting outlier behaviors signif- provides a basis for bootstrapping the process 
nent analysis OCA) (6), and locally linear em- icantly and interestingly different from previous of understanding possible functions of poorly 
bedding (7). The wide variety of new dimen- simulation runs, could help guide scientific in- understood genes fiom better understood ones. 
sionality reduction and visualization methods, vestigation and drastically improve overall From unsupervised leaming methods such 
along with general trends toward ever larger throughput for such increasingly important as clustering or dimensionality reduction, there 
and higher dimensional data sets, suggests that "science by simulation" work. I this area of ML will continue to mow in relative 

emerge patterns in data that demand explana- 

importance. This wide variety: coupled with 
varying domain specificity, close collaboration * - 
between scientists and ML researchers. 

In bioinformatics, sequence and microarray 
mRNA gene expression data are ramping up in 70 

volume as instrumentation improves, and the 
scientific understanding of many fundamental 

60 life processes is at stake. Data vector clustering 
methods have played a historic role in the early 
analyses of microarray data (4). They have also 
been used to develop new molecular classifiers 50 

of cancer types (9). Cutting-edge classification 
algorithms such as support vector machines 
have been used to predict gene function anno- 
tations fiom expression data (10). Frustratingly, 
we do not really understand the mathematical 

30 1 
mapping of such cluster structures to causal 
models of underlying gene expression circuitry 
[but see (II)]. Another biological example is in 
neuroscience, where functional magnetic reso- 20 

nance imaging brain images have been decom- 
posed into meaningful, statistically independent 

lo 
components of localized activity with the ICA 
method (12). 

A good example of how ML classifiers can 
inform an overall scientific effort, even when 1 2 3 4 5 6 7 8 9 
those classifiers are not based on scientific the- Cluster 1.3 data (n = 81) 

per '' is the NASA work On learning Fig. 1. Example of red-green activity display of one muscle gene cluster. The x axis indicates the 
detectors planetary features as volca- stage of muscle development. They axis indicates gene number. Colon represent discretized level 
noes and impact craters. The scientific need for of expression: Green is up-regulated, red is down-regulated, and black shows no change relative to 
geological feature catalogs has led to multiyear the expression level of a reference sample. 
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tion. In expression bioinformatics, one observes 
clusters of coexpressed genes, which may sug-
gest hypotheses of direct or indirect eoregula-
tion. Observed data may be also fit numerically 
to a relatively generic but predictive, causal 
model, such as a fully recurrent analog neural 
network model for gene expression data. This 
has been done for morphogenetic gene regula-
tion networks in the early Drosophila melano-
gaster embryo, resulting in predictive models 
(18). From these learned models, specific hy-
potheses were derived about which gap gene 
controls each boundary of each modeled stripe 
of even-skipped gene expression. This kind of 
model inference falls into the fundamental ML 
category of nonlinear regression. It is still large-
ly up to the imagination of the human scientist 
to transform observed patterns into testable hy-
potheses, but the model provides a mathemati-
cal language for doing so. Thus, model inver-
sion methods, like unsupervised learning meth-
ods, have the potential to formalize or automate 
some aspects of hypothesis generation, particu-
larly if coupled with Bayesian inference to en-
sure that the inverse problem is well posed. 

There are extreme cases in which the auto-
mation of hypothesis generation is especially 
important. In robotic planetary exploration, 
speed-of-light communication delays and band-
width limitationsmake robotic autonomy valu-
able or essential. Future reconnaissance geolo-
gy robots such as Mars rovers would benefit 
from the use of supervised and unsupervised 
learning to classify visible rock surfaces. They 
would also benefit from having a comprehen-

-
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sive library of preprogrammed geological mod-
els and the ability to tune, instantiate, or recom-
bine them to fit locally available evidence. 
These capabilities could be used to autono-
mously acquire and send back the most signif-
icant data available at each site. The in situ 
spacecraft, like a human field geologist, could 
maintainmultipleworking hypothesesand look 
for discriminating observations. Very early 
steps in this directionaretaken in (19) and (20). 
Similar requirements for autonomy will apply 
to solar,system orbital missions, in which on-
board analysisof survey observationsmay sug-
gest detailed follow-up observations. An early 
opportunity to test on-board sciencesoftwarein 
Earth orbit, with many extraterrestrial analogs, 
may arise with the Autonomous Sciencecraft 
Constellation experiment (21). 

Step 3: Formulate model to explain phe-
nomena. Learning good models from data is a 
central goal of ML, so the field offers a wide 
variety of pow& tools for this critical stage. 
Mixture models for clustering and recurrent 
analog neural net models for nonlinear regres-
sion have effective parameter-inference algo-
rithms as described above (for step 2). L i e  
unsupervised data-clustering algorithms, super-
vised learning algorithms have their own, 
equally generic statisticalinterpretations.At the 
other extreme in model specificity stand de-
tailed sirnulatable mathematical models of par-
ticular systems, as practiced in computational 
physics, chemistry, and more recently compu-
tational biology. An important direction in ML 
research is to create automatically models of 

intermediate generality that can incorporate 
successively more domain expertise. One ex-
ample is the method of trainable Markov Ran-
dom Fields W s ) ,  which have been applied 
to images of solar active regions with imagery 
from the Michelson Doppler Imager WI) 
instrument aboard the Solar and Helioseismic 
Observatory (SOHO) spacecraft (22, 23) (see 
Fig. 2). Also of intermediate generality is the 
influentialBayes Net or "graphical model" for-
malism to describe interacting causal chains of 
hidden and observable stochastic variables 
(24). These models generalizeHidden Markov 
models. Frontier research in these areas ad-
dresses the inference of graphical model struc-
ture (connections between variables) and prob-
ability distribution parameters by optimization 
from data [e.g., (25, 26)]. Future research will 
have to address the problem of variable, data-
dependent graph structure such as arises in bi-
ological development, fluid physics, or the rep-
resentation of abstract networks of interrelated 
hypotheses and concepts. 

When the observed data can be labeled by 
a scientist as "positive" and "negative" exam-
ples of the phenomena of interest, supervised 
classifiers can be learned. Specific classifier 
methods tend to fall into one of two groups: 
(i) Generativemodels, which strive to capture 
the joint probability of the variables in the 
physical system. These approaches can in-
clude the learning of causal mechanisms 
(e.g., Bayesian networks or graphical mod-
els). (ii) Discriminative models, which strive 
only to capture the ability to distinguish pos-
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Fig. 2. Solar image analysis. The raw (SOHOIMDI) data consist of (yellow), or quiet sun (cyan). Given the class labeling, a pixel's 
temporal sequences of two-dimensional images of intensity and intensity and magnetic flux are assumed to be governed by mixture 
magnetic flux. (A) Photograms (over 6 days). (B) Magnetograms. models appropriate to that class. The mixture model parameters for 
(C) Labelings given by the learned MRF model. The model assigns each class are learned. Images courtesy of M. Turmon, K. Shelton, and 
each pixel to one of three classes:sunspot (deep red), faculae the MDI team. 
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itive from negative examples, while avoiding forming an experiment) a point for which the 
the expense of learning full joint probability current ML model is least certain of its clas- 
densities. Support vector machines (SVMs) sification. However, Tong and Koeller (28) 
(27) are a very popular and successful exam- show that selecting the new data point that 
ple of this group. would most evenly halve the number of mod- 

As an example of discriminative models els consistent with the augmented data set, 
for robotic geology, Gilmore et al. (19) dem- regardless of whether the label turns out to be 
onstrate the ability to discriminate carbonate positive or negative, can be much more ef- 
from noncarbonate minerals using a feed- fective. They show that the special geomet- 
forward neural network taking inputs from a rical nature of the "version space" of SVM 
reflectance spectrometer suitable for use on a models consistent with the data is ideally 
Mars rover. suited to the active learning task. 

Discriminative models make no attempt to Step 5: Modzv theory and repeat (at step 
explicitly capture the true underlying physics of 2 or 3). ML work on "theory refinement" 
the phenomena. Nevertheless, as many recent addresses the issue of how best to update 
successful applications of methods such as models on the basis of new data. Much early 
SVMs have shown [e.g., (lo)], such classifiers work on neural networks focused on such 
can provide strong insights into the nature of incremental, online tasks. Both ML and the 
the phenomena, including such aspects as traditional scientific process approaches face 
which input dimensions are most useful, whlch the same fundamental issues, such as when to 
examples are most likely to be outliers, and refine the theory versus doubt the data and 
what new observations might be most worth- how to best seek parsimony in explanation. 
while to gather (e.g., "active learning" methods For parsimony, Occam's razor has a technical 
discussed in the next section). counterpart in ML theory. Following Ein-

It is important to realize that even the rela- stein's "everything should be made as simple 
tively more complex generativelprobabilistic as possible, but not simpler," ML theory pro- 
models need not be realistic to be useful. This is vides formal mathematic bases for encourag- 
a critical point for potential scientific users of ing low model complexity. In model selec- 
ML tech&logies to realize and try to exploit in tion, one may minimize complexity metrics 
practice. For example, one could train ML clas- such as Vapnik-Chervonenkis dimension or 
sifiers to classify atmospheric image data pixels minimum description length (I), while main- 
(e.g., "clouds" versus "nonclouds"), using as taining good performance on a training data 
inputs not only the raw pixel values but also the set, in order to obtain good generalization to 
prediction of complex realistic physics-based test data sets drawn from the same or related 
models for each pixel. In this way, modem ML distributions. 
methodologies can systematically determine on 
what sort of images the complex models actu- Obstacles to Automation 
ally work or fail. Furthermore, active learning To achieve its promise to improve the science 
methods can suggest new data that would allow process across all stages, ML methods face a 
the ML classifier to best correct the predictions variety of outstanding obstacles. One is that 
coming from the realistic model, toward much most ML work to date focuses on vector data, 
more accurate overall classifications. limiting its value for richer, nonvector relations 

Step 4: Testpredictions made by the theoly. such as graph clusters (29) and text data. ML 
One of the most expensive and error-prone work on bio~nformatics and Internet data that 
aspects of ML of classifier models is the need addresses these issues is relatively new and 
for relatively large volumes of (manually) la- immature. Similarly, most ML work assumes 
beled data. An emerging topic in current ML relatively fixed model structures, whereas vari- 
research is active learning, which provides au- able structures (such as data-dependent graphi- 
tomated means of determining which potential cal models) would often seem necessary-es- 
new data points would be most useful to label. pecially during early stages of investigation, 
Thus, active learning methods directly address when nothing even close to a unified theory is 
the issue of automating the process of determin- available to guide the structure. 
ing what predictions to make and what data to From a systems perspective, much work 
gather to test them. Active learning promises is still needed. Standards and methods for 
great savings over the more standard [e.g., (13)] model sharing and formal specification, en- 
use of automated classifiers in the scientific abling ML methods to communicate with 
process, by radically reducing the amount of both scientists and other ML methods, are 
manual labeling required from scientists and lab still relatively primitive and incomplete. 
technicians. The Holy Grail of integrating automated 

A good example of this emerging area of reasoning across all relevant representa-
ML, which also illustrates some of the unique tions and processes seems far from current 
advantages of the discriminative SVM ap- reality. This is in no small part due to our 
proach, is given by Tong and Koeller (28). A continuing ignorance of the creative human 
common active learning technique is to select thought processes guiding the art of doing 
as the next data point to label (e.g., by per- science. 

Conclusions 
Despite the obstacles, current machine learn- 
ing (ML) research is producing impressive 
advances on some fundamental issues. These 
include scaling up ML methods to large sam- 
ple and dimension sizes, finding the produc- 
tive balance between generative and discrim- 
inative approaches, and focusing attention on 
the most useful data (e.g., active learning). 
We expect steady progress on these core 
areas of ML research in coming years. 

Some core ML research directions are 
especially likely to further the partial automa- 
tion of scientific processes. These include 
learning from nonvector data such as labeled 
graphs, text, and images; multiscale methods 
for large-scale optimization in inference; and 
feature selection to find the most relevant 
aspects of large data sets. 

A particularly exciting recent trend in ML 
research has been the development of nonlin- 
ear Mercer kernel versions of many classic 
linear methods [e.g., kernel PCA, kernel 
nearest-neighbor, and kernel Fischer discrim- 
inates (30)] and domain-specific kernels 
[e.g., (31)l. The promise of such kernel meth- 
ods is the ability to learn highly accurate 
models on large feature spaces, while over- 
coming the traditional "curse of dimension- 
ality." We expect breakthroughs in this area, 
both for new algorithms and for new power- 
ful domain-specific kernels (32). 

Although we have focused on semiauto-
mated, human-interactive scientific inference, 
there is already demand for more fully automat- 
ic inference in special situations. Such situa- 
tions include very short or long time scales or 
locations inhospitable to human intervention, 
such as robotic planetary exploration missions. 
It will be a fascinating and instructive endeav- 
or-requiring contributions across technology, 
science, and even philosophy-to develop and 
understand the full spectrum of such scientific 
inference systems. 
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