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advance from current multibillion transistor 
chips to the multitrillion transistor range of 
terascale integration. 
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Blazing Pathways Through Genetic 

Mountains 

David K. Gifford 

I t  is now widely accepted that  high-throughput data sources wil l  shed 
essential understanding on the inner workings of cellular and organism 
function. One key challenge is t o  distill the results of such experiments 
into an interpretable computational form that  wil l  be the basis of a 
predictive model. A predictive model represents the gold standard in 
understanding a biological system and wil l  permit us t o  investigate the 
underlying cause of diseases and help us t o  develop therapeutics. Here I 
explore how discoveries can be based on high-throughput data sources 
and discuss how independent discoveries can be assembled into a com- 
prehensive picture of cellular function. 

To date, most discoveries that have been Visualization-based approaches are an im- 
based on expression data have relied on data portant first step toward understanding cellu- 
visualization. For example, in this issue, Kim lar function. Expression visualization allows 
et al. describe the first large compendium of us to hypothesize potential gene-gene rela- 
Caenorhabditis elegans expression data ( I ) .  tionships that can be experimentally tested. 
The 533 microarray experiments discussed For example, when a visualization tool shows 
characterize the transcriptome of C. elegans that genes are coexpressed, it is natural to 
cells in a wide variety of growth conditions, search for transcriptional activators that are 
developmental stages, and genetic back- shared between the genes. The results of such 
grounds. The coexpression of genes in these searches are typically expressed in schematic 
experiments gives important information form, with the schematics depicting how 
about potential gene coregulation and the genes influence one another's expression and 
functions of previously uncharacterized activity. Often posttranslational modifica-
genes in C. elegans. Thus, these data will be tions of proteins play a large role in their 
an important basis for further research in the activities, and these modifications must also 
C. elegans community. 	 be captured in a schematic diagram to accu- 

Kim et al. visualize the C. elegans expres- rately predict the behavior of a system. 
sion data in three dimensions for analysis. The individual elements of understanding 
Groups of related genes in this three-dimen- that grow out of visualization and subsequent 
sional approach appear as mountains, and the experiments can be naturally organized into a 
entire transcriptome appears as a mountain model-based approach to discovery. Model- 
range. Distances in this synthetic geography based approaches codify our understanding 
are related to gene similarity, and mountain of the underlying causes of data variation that 
heights are related to the density of observed is observed in data visualization, and the 
genes in a similar location. A three-dimen- integration of results into a system model is 
sional approach is a departure from the com- necessary for broad understanding and in- 
mon practice of analyzing expression data in sight. In a model-based approach, competing 
a single dimension. Single-dimension analy- models that describe a function are construct- 
sis places genes in a total ordering, limiting ed, and the models are scored against exper- 
our ability to see important relationships. imental data. The score of a model describes 

the likelihood of observing the experimental 
data given the model under consideration.

Department of Computer Science, Massachusetts In- 
stitute of Technology, 200 Technology Square, Cam- Thus, models provide a principled way of 
bridge, M A  02139, USA. E-mail: gifford@mit.edu judging the relative likelihood of competing 

hypotheses. When many models have rough- 
ly the same score, it is possible to determine 
the features that they share in common. The 
shared features of high-scoring models rep- 
resent biological relationships that are likely 
to be important. 

Despite the extraordinary discriminatory 
benefits of models, many biologists retreat 
from this approach with concerns about com- 
plex differential equations, unintelligible 
computer commands, and a feeling of unease 
that researchers will not be able to grasp the 
subtleties of what the models are saying. 
Furthermore, many model-based approaches 
require the values of reaction parameters that 
we do not yet know and that are difficult to 
approximate from contemporary high-
throughput data sources. New approaches to 
modeling that are intuitive, can capture high- 
level structure, and are parameter-free would 
overcome these problems and motivate more 
biologists to capture and analyze in compu- 
tational form what they suspect to be true. 

Structured computational models, and in 
particular graphical models, have recently been 
proposed as a parameter-free approach for mod- 
eling biological network structure (2, 3). Just 
like the schematic diagrams familiar to biolo- 
gists, a graphical model captures the qualitative 
relationships between variables. Vertices in a 
graphical model represent variables such as 
mRNA expression levels, protein levels, envi- 
ronmental conditions, genotype, and phenotype. 
Edges in a graphical model describe relation- 
ships between variables and can be annotated 
with typical biological semantics, such as en- 
hances or represses. 

Once constructed, a graphical model rep- 
resents both a conceptual understanding of a 
biological system and a computational means 
for predicting the effects of pertubations to 
the system. For example, Fig. 1 illustrates 
how a graphical model can explain data in a 
form that is simpler and more easily interpret- 
able compared with conventional clustering di- 
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Fig. 1. Expression data can be visualized directly and as genetic regulatory 
networks. (A) ghows the hierarchical clustering of 32 genes in 320 5. 
cerevisiae expression experiments (240 shown) and (B) shows how the 
data can be used to automatically reconstruct a tentative genetic regu- 
latory network with graphical models. Genes expressed only in MATa cells 

I are colored dark blue (MFA1, MFA2, STE2. STE6, AGA2, and BAR1); genes 
expressed only in MATa cells are colored red (MFALPHAI, MFALPHAZ, 

I 
STE3, and SAG1); genes whose promoters are bound by Stel2 are colored 
cyan (STE12, FAR1, AGA1, FUS1, and FUS3); genes codingfor components 
of the heterotrimeric G-protein complex are colored bright green (GPA1, 
STE4, and STE18); genes coding for core components of the primary 

signaling cascade complex are colored yellow (STES, STET, and STE11); genes coding for auxiliary or alternate components of the signaling cascade 
are colored magenta (STESO, STEZO, and KSSI); and genes whose protein products form part of the SWI-SNF complex are colored orange (SWI1 and 
SNFZ). Full details on the interpretation of the graphical model can be found in (5). 

agrams. Computers can be used to compare 
graphical models from disparate systems to 
find preserved structure, and to query large 
databases for models that contain specified 
components of interest to an investigator. 
Therefore, graphical models are a natural 
computational respository for our high-level 
knowledge about biological systems. 

Because graphical models are inherently 
probabilistic, they can represent areas of imper- 
fect knowledge and complete understanding 
within the same model. This ability is crucial 
for our ability to evolve models as our under- 
standing of a system improves. Imperfect 
knowledge can be represented as simply as "I 
think these two genes interact somehow," 
whereas complete understanding can be repm 
sented as a precise specification of the transfer 
function between the genes. 

Graphical models are simple, yet they can 
be scored against noisy high-throughput ex- 
perimental data. Such scores allow one to 
precisely judge alternative high-level hypoth- 
eses about the structure of a given genetic 
regulatory network. One nice aspect of graph- 
ical models is that they are general enough to 
permit a wide variety of high-throughput data 
sources to be fused to provide a focused 
picture of cellular function. For example, data 

from location, expression, and proteomic 
analysis can be combined in a multiple expert 
approach that overcomes some of the system- 
ic difficulties of relying on a single type of 
data. Furthermore, the value of additional 
data can be judged in the context of graphical 
models, thus allowing experimental work to 
provide highly informative data given what is 
already known. 

When multiple data sources are fused, it is 
possible to automate the search for high- 
scoring models. Millions of alternative model 
structures can be systematically generated 
and scored, and the features that are pre- 
served among the best scoring models can be 
presented. Reverse-engineering genetic regu- 
latory networks in this fashion require highly 
informative data about the system being dis- 
covered in order to avoid model overfitting. 
Overfitting occurs when a model is suffi- 
ciently complex to explain limited data by 
chance. Experimental design can also be aid- 
ed by a modeling system because in many 
instances a model can be used to calculate the 
marginal value of specific data. 

The trade for the simplicity of graphical 
models is their inability to model fie-grained 
dynamic behavior. For the faithful detailed 
replication of cellular behavior, other tech- 

niques, such as dynamic stochastic simula- 
tion (4), will be needed. Dynamic stochastic 
simulation permits additional knowledge to 
be incorporated and tested, such as binding 
constants and reaction rates. 

Elucidating complete genetic regulatory 
networks will entail an immense amount of 
biological discovery that we expect will 
dwarf the human genome project in magni- 
tude. Genetic regulatory networks are re- 
sponsible for cellular control and the devel; 
opment of multicellular organisms and are 
the foot soldiers in the complex processes 
involved in neurobiology. Thus, a sizable 
fraction of the secrets of biology will be 
uncovered once we have built robust de- 
scriptions of the genetic regulatory net- 
works that underlie cellular behavior. 

Thus, a challenge that lies before us in 
postgenome biology is organizing our -efforts 
to discover the genetic regulatory networks of 
key model systems. The amount of data re- 
quired will be so vast that it would be un- 
imaginable for a single investigator to pro- 
duce it all. Unfortunately, unlike genome se- 
quencing efforts, the ability to share informa- 
tion in the modeling context is in an 
embryonic stage. In the world of genome 
sequencing, one can physically separate the 
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Table 1. Parallels between genome sequencing tory network, a graphical model can play the mantic information in computational form. 
and genetic network discovery. 

Genome 
sequencing 

Genome semantics 

Physical maps Graphical model 
Contigs Low-level functional 

models 
Contig Module assembly 

reassembly 
Finished genome Comprehensive model 

sequence 

DNA to be sequences into distinct pieces, 
parcel out the detailed work of sequencing, 
and then reassemble these independent ef- 
forts at the end. It is not quite so simple in the 
world of genome semantics. 

Despite the differences between genome se- 
quencing and genetic network discovery, there 
are clear parallels that are illustrated in Table 1. 
In genome sequencing, a physical map is useful 
to provide scaffolding for assembling the fm-
ished sequence. In the case of a genetic regula- 

same role. A graphical model can represent a 
high-level view of interconnectivity and help 
isolate modules that can be studied indepen- 
dently. Like contigs in a genomic sequencing 
project, low-level functional models can ex- 
plore the detailed behavior of a module of genes 
in a manner that is consistent with the higher 
level graphical model of the system. With stan- 
dardized nomenclature and compatible model- 
ing techniques, independent functional models 
can be assembled into a complete model of the 
cell under study. 

To enable this process, there will need to 
be standardized forms for model representa- 
tion. At present, there are many different 
modeling technologies in use, and although 
models can be easily placed into a database, 
they are not useful out of the context of their 
specific modeling package. The need for a 
standardized way of communicating compu- 
tational descriptions of biological systems ex- 
tends to the literature. Entire conferences 
have been established to explore ways of 
mining the biology literature to extract se-

Going forward, as a community we need 
to come to consensus on how to represent 
what we know about biology in computa- 
tional form as well as in words. The key to 
postgenomic biology will be the computa- 
tional assembly of our collective knowl- 
edge into a cohesive picture of cellular and 
organism function. With such a comprehen- 
sive model, we will be able to explore new 
types of conservation between organisms 
and make great strides toward new thera- 
peutics that function on well-characterized 
pathways. 
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Machine Learning for Science: State of the 

Art and Future Prospects 


Eric Mjolsness* and Dennis DeCoste 

Recent advances in  machine learning methods, along wi th successful 
applications across a wide variety of fields such as planetary science and 
bioinformatics, promise powerful new tools for practicing scientists. This 
viewpoint highlights some useful characteristics of modern machine learn- 
ing methods and their relevance t o  scientific applications. We conclude 
wi th some speculations on near-term progress and promising directions. 

Machine learning (ML) (I) is the study of 
computer algorithms capable of learning to im- 
prove their performance of a task on the basis of 
their own previous experience. The field is 
closely related to pattem recognition and statis- 
tical inference. As an engineering field, ML has 
become steadily more mathematical and more 
successful in applications over the past 20 
years. Learning approaches such as data clus- 
tering, neural network classifiers, and nonlinear 
regression have found surprisingly wide appli- 
cation in the practice of engineering, business, 
and science. A generalized version of the stan- 
dard Hidden Markov Models of ML practice 
have been used for ab initio prediction of gene 
structures in genomic DNA (2). The predictions 
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correlate surprisingly well with subsequent 
gene expression analysis (3). Postgenomic bi- 
ology prominently features large-scale gene ex- 
pression data analyzed by clustering methods 
(4,a standard topic in unsupervised learning. 
Many other examples can be given of learning 
and pattern recogmtion applications in science. 
Where will this trend lead? We believe it will 
lead to appropriate, partial automation of every 
element of scientific method, from hypothesis 
generation to model construction to decisive 
experimentation. Thus, ML has the potential to 
amplify every aspect of a working scientist's 
progress to understanding. It will also, for better 
or worse, endow intelligent computer systems 
with some of the general analytic power of 
scientific thinking. -

Machine Learni~ ng at Every Stage of 
the Scientific Process 
Each scientific field has its own version of the 
scientific process. But the cycle of observing, 

creating hypotheses, testing by decisive exper- 
iment or observation, and iteratively building 
up comprehensive testable models or theories is 
shared across disciplines. For each stage of this 
abstracted scientific process, there are relevant 
developments in ML, statistical inference, and 
pattem recognition that will lead to semiauto- 
matic support tools of unknown but potentially 
broad applicability. 

Increasingly, the early elements of scientific 
method-observation and hypothesis genera- 
tion-face high data volumes, high data acqui- 
sition rates, or requirements for objective anal- 
ysis that cannot be handled by human percep- 
tion alone. This has been the situation in exper- 
imental particle physics for decades. There 
automatic pattern recogmtion for significant 
events is well developed, including Hough 
transforms, which are foundational in pattern 
recognition. A recent example is event analysis 
for Cherenkov detectors (8) used in neutrino 
oscillation experiments. Microscope imagery in 
cell biology, pathology, petrology, and other 
fields has led to image-processing specialties. 
So has remote sensing from Earth-observing 
satellites, such as the newly operational Terra 
spacecraft with its ASTER (a multispectral 
thermal radiometer), MISR (multiangle imag- 
ing spectral radiometer), MODIS (imaging 
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