
pathway DBs can impose an organizing frame- 
work on complex gene expression (or proteom- 
ics) data sets that facilitates their interpretation. 

Future challenges for pathway DBs include 
niodellng of large signaling networks in eukary- 
otic organisms; performing automated layout 
simllar to that shown in Fig. 1 of the much larger 
pathway networks that exist in eukaryotic or- 
ganisms, and supporting methods for user nav- 
igation through such a larger pathway network: 
defining standard ontologies for exchange of 
pathway data among different DBs and applica- 
tion programs; and creating new analysis algo- 
rithms for extracting new insights from pathway 
networks. such as to aid drug design by analyz- 
ing diseased human pathway networks, or pre- 
dicting optimal dmg targets for antimicrobial 
drug design. 

One lesson for computer scientists provid- 
ed by pathway DBs (and by other bioinfor- 
matics applications) concerns the importance 
of DB content to solving computational prob- 
lems. Most computer scientists focus their 
attention on algorithms, thinking that the best 
way to solve a hard computational problem is 
through a better algorithm. However, for 
problems such as predicting the pathway 
complement of an organism from its genome. 
or predicting metabolic products that an or- 
ganism can produce from a given growth 
medium. I know of no algorithms that can 
solve these problems without being coupled 
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with an accurate and well-designed pathway 
DB. 

By encoding scientific theories in a sym- 
bolic DB. scientists can more easily check 
those theories for internal consistency and for 
consistency with external data. can more eas- 
ily refine theories that are found to violate 
external data, and can more easily assess the 
global properties of the system that such a 
theory describes. The genome revolution is 
increasing the need for pathway DBs in the 
biological sciences, and similar develop-
ments will occur in other sciences. However, 
effective implementation of this paradigm is 
hampered because most biologists (and most 
other scientists) receive essentially no educa- 
tion in DBs or knowledge representation. Al- 
though many scientists learn a computer pro- 
gramming language as part of their under- 
graduate education, introductory program-
ming courses completely omit DB and 
knowledge representation concepts such as 
data models, ontologies, DB query languag- 
es, logical inference, DB design, and formal 
grammars-which explains why many bio- 
logical DBs do not have a regular syntactic 
structure. much less a consistent or precisely 
defined semantics. As science enters the in- 
formation age, it is crucial that the computer- 
science education that scientists receive cov- 
ers symbolic computing as well as numerical 
computing. 
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Limits on Silicon Nanoelectronics for 

Terascale Integration 


James D. Meindl,* Qiang Chen, Jeffrey A. Davis 

Throughout the past four decades, silicon semiconductor technology has 
advanced at exponential rates in both performance and productivity. 
Concerns have been raised, however, that the limits of silicon technology 
may soon be reached. Analysis of fundamental, material, device, circuit, 
and system limits reveals that silicon technology has an enormous re- 
maining potential t o  achieve terascale integration (TSI) of more than 1 
tril l ion transistors per chip. Such massive-scale integration is feasible 
assuming the development and economical mass production of double- 
gate metal-oxide-semiconductor field effect transistors wi th gate oxide 
thickness of about 1 nanometer, silicon channel thickness of about 3 
nanometers, and channel length of about 10 nanometers. The develop- 
ment of interconnecting wires for these transistors presents a major 
challenge t o  the achievement of nanoelectronics for TSI. 

Silicon technology has advanced at exponen- 
tial rates in both performance and productiv- 
~tythroughout the past four decades. From 
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1960 to 2000, the energy transfer associated 
with a binary switching transition-the ca-
nonical digital computing operation-de-
creased bv about five orders of magnitude 

u 


and the number of transistors per chip in- 
creased by about nine orders of magnitude. 
Such exponential advances must eventually 
come to a halt imposed by a hierarchy of 
physical limits. The five levels of this hierar- 

chy are defined as fundamental, material. de- 
vice, circuit, and system (1).A coherent anal- 
ysis of the key limits at each of these levels 
reveals that silicon technology has an enor- 
mous remaining potential to achieve TSI of 
more than 1 trillion transistors per chip. with 
critical device dimensions or channel lengths 
in the 10-nm range. This potential represents 
more than a three-decade increase in the 
number of transistors per chip and more than 
a one-decade reduction in minimum transis- 
tor feature size compared with the state of the 
art in 2001. Fundamental physical limits that 
are independent of the characteristics of any 
particular material, device structure, circuit 
configuration, or system architecture are vir- 
tually impenetrable barriers to future advanc- 
es of TSI. 

Binary switching transitions implemented 
with transistors are indispensable to perform- 
ing computation in a digital system. The en- 
ergy transfer per binary transition is a reveal- 
ing metric for comparing the performance of 
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switching operations at all levels of the hier- 
archy. Consider the power-delay plane, 
where the ordinate is the average power 
transfer, P, during a binary transition and the 
abscissa is the time interval of the transition, 
t,. The use of logarithmic scales on both axes 
results in a diagonal line (or locus) where the 
switching energy, E = Pt,, remains constant. 
During the past four decades, constant 
switching energy loci have migrated contin- 
uously toward the lower left comer of the 
power-delay plane, reflecting a monotonical- 
ly decreasing binary switching energy (1). 
The prime cause of this migration has been 
the scaling down of the dimensions of tran- 
sistors and their binary signal voltage swing, 
typically equal to the supply voltage. Supply 
voltage is reduced to maintain a nearly con- 
stant electric field (in Vlcm) or electrical 
stress on the transistor. Scaling of transistors 
reduces their energy dissipation per binary 
transition, their intrinsic switching delay, 
their area, and therefore their cost. 

The second indispensable function per- 
formed in a digital system is communication, 
implemented by interconnects or wires. The 
primary purpose of an interconnect is com- 
munication between distant points with small 
latency. Interconnect performance can be elu- 
cidated at all levels of the hierarchy by plot- 
ting the square of the reciprocal interconnect 
length, L-*, against latency, T. In the L-* 
versus T plane, with logarithmic scales on 
both axes, a diagonal line is a locus of con- 
stant value of L-*T = T,,~c,,, s/cm2 or con- 
stant distributed resistance-capacitance prod- 
uct. This product is the prime figure of merit 
for interconnects. During the past four de- 
cades, constant distributed resistance-capaci- 
tance loci have migrated continuously toward 
the upper right corner of the L - 2 - ~  plane, 
reflecting a continuously increasing distribut- 
ed resistance-capacitance product and conse- 
quently a larger latency for communication 
between two fixed points. Larger latency can- 
not be avoided because the cross-sectional 
dimensions of interconnects must be scaled 
down to provide the dense wiring required by 
smaller and smaller transistors. Consequent- 
ly, during the past decade, interconnect laten- 
cy (as well as energy dissipation) has become 
a primary constraint on current gigascale in- 
tegration. Exploring key limits at each of the 
five levels of the hierarchy in the power- 
delay and reciprocal length squared-latency 
planes elucidates future opportunities for 
TSI. 

Fundamental Limits 
The three key fundamental limits on TSI are 
derived from thermodynamics, quantum me- 
chanics, and electromagnetics (1,2). The fun- 
damental limit on signal energy transfer dur- 
ing a binary switching transition is E(min) = 
(ln2)kT, where k is Boltzmann's constant and 

T is absolute temperature. This limit is char- 
acterized as fundamental because its value is 
independent of the properties of any particu- 
lar material, device, or circuit that may be 
used to implement the binary transition (3). 
Its importance as a constraint on nanoelec- 
tronics for TSI is unsurpassed. In simple 
physical terms, the limit reveals that a single 
electron undergoing a binary transition must 
have an energy comparable to its thermal 
energy, (312)kT, to satisfy the quintessential 
requirement of binary signal discrimination. 

The first statement of this limit known to 
the authors is attributed to John von Neu-
mann, who "computed the thermodynamical 
minimum of energy per elementary act of 
information from the formula kTlog,M' 
where N = 2 for a binary act (4, p. 183). 
Keyes observes, however, that "the report of 
von Neumann's ideas fails to provide any 
justification of this assertion or explanation 
of the reasoning underlying it" (5). Landauer 
derived the same result by analyzing a hypo- 
thetical binary device consisting of a particle 
in a bistable potential well (5). On the basis 
of earlier work of Swanson and Meindl (6), 
the minimum switching energy of an ideal 
transistor operating in the simplest digital 
circuit, an inverter, is E(min) = (ln2)kT (3). 
Precisely the same result is derived (3) by 
treating an isolated interconnect as a commu- 
nication channel described by Shannon's 
classical theorem for channel capacity (7). 
This fundamental limit receives further sup- 
port from the observation that on the basis of 
a Boltzmann probability density function, the 
probability of error is 0.5 for a binary transi- 
tion with signal energy transfer E(min) = 
(ln2)kT (8). 

Quantum mechanics and, more specifical- 
ly, the Heisenberg uncertainty principle (9) 
define the second fundamental limit, which 
requires a signal switching energy transfer 
AE 2 hit,, where h is Planck's constant and 
t, is the transition time. This limit results 
from the wave nature of the electron and the 
resulting uncertainty in its position-momen- 
turn and energy-time relations (9). 

The fundamental limits based on ther- 
modynamics and quantum mechanics result 
in a "forbidden region" in the power-delay 
plane (red region, Fig. 1). In this region, no 
binary transition can operate, regardless of 
the materials, devices, or circuits used for 
its implementation. 

The third fundamental limit from electro- 
magnetics simply expresses the fact that the 
time of flight, T, of an electromagnetic wave 
traveling along any metallic interconnect or 
optical fiber of length L is strictly limited by 
the velocity of light in free space, c,, accord-
ing to T r Llc, (Fig. 2) (1).The red region is 
again a forbidden zone of operation for any 
interconnect regardless of the materials or 
structure used for its implementation. 

Material Limits 
Material limits are determined by the proper- 
ties of the particular semiconductor, dielec- 
tric, and metallic materials used but must be 
essentially independent of the structural fea- 
tures and dimensions of particular devices (1, 
10). There are five key material limits. Sili- 
con imposes four of them: a switching ener- 
gy, a transit time, a thermal conductance, and 
a dopant fluctuation limit. The dielectric con- 
stant of the insulator of a multilevel intercon- 
nect network imposes the final material limit. 

The switching energy limit is determined 
by the amount of energy E that must be stored 
in a cube of semiconductor material to sup- 
port a selected binary transition voltage, V,. 
This is the voltage applied between two op- 
posite faces of the cube in the direction of 
current flow. The expression for this limiting 
energy is given by E = where E isE(V,)~/~%,, 
the permittivity and Zc is the breakdown 
electric field strength of the semiconductor 
material. The transit time limit t ,  is defined 
by the smallest time interval required for an 
electron to be transported through the cube. 
This limiting time is expressed as t, = V,/ 
vs%,, where vs is the electron saturation ve- 
locity (the largest possible electron velocity 
whose value is lo7 cmls in silicon) in a 
particular material. The thermal conductance 
limit defines the maximum amount of power, 
P, that may be dissipated in a single transistor 
within a particular semiconductor chip. P 
must equal the rate of heat removal under 
steady state conditions. The power dissipa- 
tion limit is given by P = aKvsATt,, where K 
is the thermal conductivity, v, is the satura- 
tion velocity of the semiconductor material, 
AT is the temperature difference between the 
transistor and an ideal heat sink for the semi- 
conductor chip, and t, is the device transit 
time. 

The minimum binary transition voltage V,  
needed for high-performance devices and cir- 
cuits for TSI is believed to be 0.5 V. The orange 
region defined by the switching energy, transit 
time, and thermal conductance limits (Fig. 1) is 
a second forbidden zone of operation, imposed 
by the material limits of silicon. No silicon 
transistor regardless of its structural features 
can operate in this orange forbidden region. It is 
especially notable that the three expressions 
defining the material limits are essentially inde- 
pendent of the structural features and dimen- 
sions of any particular device. A rare exception 
may be certain very small devices exhibiting an 
effective increase in canier velocity due to a 
short-range phenomenon termed velocity over- 
shoot (11). 

The fourth key semiconductor material 
limit is a dopant fluctuation limit, which is 
defined by the expression o l p  = ( ~ I A X ) ~ ' ~ .  
The standard deviation and the mean value of 
the number of dopant atoms within a cube of 
semiconductor material of dimension AX are 
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a and p, respectively; 4 is the average dis- 
tance between dopant atoms in the cube. This 
expression reveals that the standard deviation 
of the number of dopant atoms in a cube of 
semiconductor material, o, increases without 
bound as the cube dimension, AX, decreases. 
This poses a critical concern for TSI because 
it hints that deviations in the values of key 
device parameters, such as the threshold volt- 
age of a transistor, may increase without 
bound as device dimensions are scaled to the 
10-nm range. 

The time of flight T of an electromagnetic 
wave in a solid dielectric material with a 
relative permittivity, E,, is expressed by T = 
L/(E,)~'~c,, which defines the fifth key mate- 
rial limit. The dashed locus (Fig. 2) repre- 
sents this limit for E, = 2. The orange zone is 
a forbidden region for any interconnect 
whose relative permittivity E, is greater than 
2. Relative permittivity values less than two 
generally require porous materials consisting 
of gas "balloons" encased by thin solid walls. 

Device Limits 
There are five key limits at the device level (1, 
12) of the hierarchy. Metal-oxide-semiconduc- 
tor field effect transistors (MOSFETs), the most 
critical devices of TSI, impose a switching en- 
ergy, a transit time, and a parameter fluctuation 
limit. Interconnects impose key latency and 
cross-talk l i t s .  An advanced MOSFET struc- 
ture is illustrated in Fig. 3. 

During a binary switching transition, the 
energy stored on the capacitive gate or control 
electrode of a MOSFET device is transferred. 
This energy therefore represents its switching 
energy l i t ,  given by E = (1/2)C,(Vdd)2. The 
gate capacitance of a minimum geometry 
MOSFET is expressed by C, = E,, (Lch)2/To,, 
where E,, is the permittivity of the gate oxide, 
LC, is the channel length, and Tox is the gate 
oxide thickness. The binary signal voltage 
swing is assumed to equal the supply voltage 
V,,, as is the case for the predominant comple- 
mentary metal-oxide-semiconductor (CMOS) 
digital circuit family. The lower limit on E 

Fig. 1. Average power 
transfer during a bina- 
ry transition, P, versus 
transition time, t,,, for 
the first three levels of 
the hierarchy. The red, 
orange, and green 
zones are forbidden by 
fundamental, silicon 
material, and 50-nm 
channel length tran- 
sistor device level lim- 
its, respectively. 

Fig. 2. Reciprocal in- 
terconnect length 
squared, L-2, versus 
Latency, T, for the 
first three levels of 
the hierarchy. The 
red, orange, and 
green zones are for- 
bidden by fundamen- 
tal, material (sr = 
2.0), and 250-nm- 
wide interconnect 
device level limits, 
respectively. 
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corresponds to a minimum channel length, LC,, 
or minimum size MOSFET operating at a min- 
imum supply voltage, V,,. 

The intrinsic switching delay of a MOSFET 
can be expressed in its simplest form as the 
transit time of carriers across its channel from 
source to drain or td = Lchlv,, where the average 
velocity of a transiting electron is taken to be 
the saturation velocity, v,. 

Both the switching energy, E, and the 
switching delay, td, of a MOSFET will be at 
a minimum for the smallest possible channel 
length, LC,. It is this. observation that has 
driven the quest for ever smaller transistors 
for the past four decades. Unfortunately, as 
transistor channel length is scaled down, 
eventually the gate or threshold voltage at 
which the device switches from open or non- 
conducting to closed or strongly conducting 
precipitously decreases. The double-gate 
MOSFET structure (Fig. 3) enables the 
smallest values of channel length. In this 
device, drain-to-source channel current is 
controlled by electric fields created by both 
top and bottom gate voltages rather than from 
a top gate only as in conventional MOSFETs 
(1). 

A recently derived solution to the two- 
dimensional Poisson equation of electrophys- 
ics defines the channel length of a double- 
gate MOSFET as (13) 

where A = [l + (llr)][l + (~12)]-~T,~ andr = 
Ts,/3TOx, and P = qlkT. Figure 4 illustrates two 
plots of Eq. 1, which indicate the key opportu- 

Fig. 3. Schematic diagram of the cross section 
of a symmetrical double-gate MOSFET. The 
gate electrode is highly conducting, the gate 
oxide is highly insulating, and the undoped 
channel is semiconducting silicon. In this so- 
called metal-oxide-semiconductor field effect 
transistor, or MOSFET, an input signal voltage 
applied between the gate and source electrodes 
controls output current flow from drain to  
source. 
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nity for double-gate MOSFET channel lengths 
in the 10-nm range. The ultimate challenge of 
TSI is implementing several trillion of these 
devices-with tightly controlled gate oxide 
thickness T, in the 1.0-nm range, silicon chan- 
nel thickness Tsi in the 3.0-nm range, and chan- 
nel length LC, in the 10-nm range-in a single 
silicon chip selling for less than $100. As indi- 
cated in Fig. 4, these values of Tox and Tsi are 
necessary to achieve channel lengths LC, in the 
10-nm range. 

The third key device limit concerns the 
need for ultratight control of MOSFET di- 
mensions and dopant impurity concentra- 
tions to preclude parameter fluctuations so 
large as to cause functional faults in device 
and circuit operation. Random deviations 
from nominal values of MOSFET and in- 
terconnect parameters preclude attainment 
of the precise performance levels defined 
by the hierarchy of limits on TSI. A prime 
example of this generalization is the funda- 
mental limit imposed by thermodynamics 
on signal energy transfer during a binary 
switching transition, E(min) = (ln2)kT. At 
this level of signal energy transfer, the 
probability of error during a binary transi- 
tion is unacceptably high and therefore 
mandates a larger value of switching ener- 
gy and its associated lower probability of 
error. Moreover, double-gate MOSFET 
models of the impact of random placement 
of dopant atoms in the channel region (Fig. 
3) reveal that control of threshold voltage 
deviation demands the use of very lightly 
doped (typically < 1015 atoms/cm3) chan- 
nel regions (14). 

A distributed resistance-capacitance net- 
work serves as the model for an isolated 
interconnect whose response time or latency, 
T, increases quadratically as interconnect 
length increases and as metal width and 
height as well as insulator thickness are 
scaled downward to increase wiring density 
(1). (As the width and height of a metal 
interconnect continue to scale downward, an 
additional severe deleterious effect enters the 
problem. This is the increase in the effective 
resistivity, p, that results from several factors, 

Fig. 4. (A) Channel length 
versus oxide thickness for 
T,, = 5 nm. (B) Channel 
length versus silicon thick- 
ness for T, = 0.8 nm. 
These. curves illustrate the 
potential to  achieve dou- 
ble-gate MOSFETs with 10- 
nm channel lengths for gate 
oxide thickness in the 1.0- 
nm range and silicon chan- 
nel thickness in the 3.0-nm 
range. 

including strong electron scattering at the 
interface of the conductor and its surrounding 
insulator, and from large temperature increas- 
es resulting from the poor thermal conductiv- 
ity of insulating layers.) 

The normalized peak cross-talk voltage 
due to capacitive coupling between a quies- 
cent interconnect and two adjacent parallel 
interconnects that undergo binary switching 
transitions is given by V,/V,, = (1/2)[cm/ 
(tint + cm)], where cm is the distributed mu- 
tual capacitance between the quiescent inter- 
connect and an adjacent interconnect. As mu- 
tual capacitance increases because of smaller 
interconnect spacing, peak cross-talk voltage 
increases (15). 

The MOSFET switching energy and transit 
time limits result in the green forbidden zone of 
operation for a conventional (that is, single-gate 
bulk silicon) device whose channel length is 
greater than 50 nm (Fig. 1). A 50-nm channel 
length represents a conservative value for lim- 
iting channel length of such MOSFETs. The 
latency of an interconnect modeled as a distrib- 
uted resistance-capacitance network is illustrat- 
ed in Fig. 2. The green region represents a 
forbidden zone of operation for any intercon- 
nect with a copper conductor, an insulator with 
a relative permittivity of two, and a square 
cross-sectional dimension of 250 nm (a suitable 
value for intermediate length interconnects). 
Figures 1 and 2 illustrate the comparative val- 
ues of key limits at the fmt three levels of the 
hierarchy (1). 

Circuit Limits 
The six key circuit limits (1,12) on TSI are a 
static transfer curve, a switching energy, and 
a propagation delay limit imposed by CMOS 
logic circuits; latency and signal contarnina- 
tion limits imposed by global interconnect 
circujts; and a performance fluctuation limit. 

To provide the quintessential capability 
of binary signal discrimination, the signal 
voltage swing of a CMOS digital logic 
circuit must satisfy the constraint Vdd r 
2(ln2)kTlq 2 0.038 V, where q is the 
charge of a single electron and T = 300°C 
(8). This static transfer curve limit applies 
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to the predominant static CMOS logic cir- 
cuit family for which binary signal swing is 
equal to the supply voltage. The switching 
energy limit is determined by the amount of 
energy that is transferred during a binary 
transition of an inverter, the basic circuit of 
the CMOS logic family. The switching en- 
ergy is given by E = (1/2)Cc(V,d)2, where 
Cc is the capacitance loading the output 
terminals of the circuit (I). The propaga- 
tion delay limit is the average time, td, 
required for a binary signal appearing at the 
input terminals of a logic circuit to be 
propagated to its output terminals. In es- 
sence, t ,  is simply the circuit latency (I). 

The latpncy of a global interconnect cir- 
cuit is, for example, the time required for a 
signal to propagate from the output terminals 
of a driver circuit, feeding a global intercon- 
nect extending from comer to comer of a 
chip, to the input terminals of a receiver 
circuit. This latency is minimal if the total 
resistance of the interconnect is small com- 
pared with its characteristic impedance, Zo, 
and the output resistance of the driver equals 
Zo (1). The characteristic impedance is given 
by Zo = (L/C)lD, where L and C are the 
distributed inductance and capacitance per 
unit length of the interconnect, respectively. 

The signal contamination limit results 
from mutual inductance and capacitance be- 
tween a global interconnect, the victim, and 
its surrounding interconnects, the aggressors, 
causing unwanted or contaminating noise to 
appear on the victim when an intended signal 
appears on the aggressors. A simplified ex- 
pression for the normalized peak cross-talk 
noise is given by V,/V,, = (~/4)[c,l(c~, + 
c,)], where c, is the mutual capacitance 
between adjacent interconnects and ci, is the 
capacitance between an interconnect and its 
underlying conducting plane (15, 16). 

The performance fluctuation limit at the 
circuit level results from transistor and inter- 
connect electrical parameters deviating from 
their nominal values for whatever reasons 
including intrinsic and extrinsic manufactur- 
ing tolerances, temperature variations, supply 
voltage changes, and so forth. As previously 
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noted, fluctuations prevent circuit perfor- 
mance levels from reaching those defined by 
nominal physical limits. Typical increases in 
propagation delay and power dissipation due 
to such fluctuations are 30 and 50% above 
nominal for 50-nm generation CMOS logic 
circuits (1 7). 

gates implemented with 50-nm generation 
CMOS technology. The required heat remov- 
al capacity of the package must not exceed 50 
W/cm2. The required clock frequency is 10 
GHz. The entire system must be fabricated 

capacitance, C,, loading a two-input CMOS 
logic gate in the critical path of a macrocell. 
The switching energy limit is given by E = 
(1/2)C,(&J2, where V, is determined by min- 
imizing the sum of the switching and static 

within a single silicon chip. 
A distributed shared memory multiproces- 

energy dissipation during a clock cycle (19). 
The heat removal limit requires that the total 

The switching energy and propagation delay 
limits for 50-nm generation CMOS logic cir- 
cuits are illustrated in Fig. 5; Fig. 6 illustrates 
the global interconnect latency limit, In both 

sor architecture that consists of a 24 by 24 
array of 576 identical macrocellular micro- 

power dissipation of the chip, <, is less than the 
-ling capacity of the package or P, 5 QA, 

processors each containing 1.73 million gates 
is assumed. Each macrocell communicates 

where Q is the cooling coefficient of the pack- 
age (in W/crn2) and A is the chip area. Heat 

directly only with its four neaiest neighbors. 
The relatively small size of a macrocell and 
its nearest-neighbor-only external intercon- 
nects ensure relatively short internal and ex-. 
ternal interconnects and therefore small inter- 
connect capacitances and hence small latency 
and switching energy dissipation. 

To determine the switching energy limit, it 
is necessary to derive the complete stochastic 
interconnect length distribution of a macrocell 
(18). This enables calculation of the average 

figures, the blue regions define forbidden zones 
for operation due to circuit limits. 

removal actually limits the performance or 
maximum clock frequency of the chip (I). 

The clock frequency limit requires that the 
clock period, T,, must be greater than the sum of 
the clock skew, T,,, and the critical path delay, 
T,,, or T, r T,, + T,. Clock skew is the 
maximum difference in arrival times of a clock 
pulse at any two locations on the chip, and 
critical path delay is the maximum time interval 
required for a signal to propagate between two 
clocked locations. 

The interior of the tiny white triangle in the 
P-t, plane of Fig. 5'is the allowable design space 
for a system that fulfills all of its specified 
critical requirements. The surrounding purple 

System Limits 
Architecture, switching energy, heat removal, 
clock frequency or timing, and chip size im- 
pose five critical system limits on TSI. To 
elucidate these limits, it is helpful to select a 
representative set of requirements that must 
be satisfied by a gigascale system. The sys- 
tem to be considered requires 1 billion logic 
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region is a forbidden zone of operation in which 
one or more critical requirements cannot be 
fulfilled. Similarly, the small white triangle in 
the L-2-~ plane of Fig. 6 represents the allow- 
able design space and the purple zone is a 
forbidden region. The orthogonal sides of the 
triangle in the Fig. 6 are defined by the edge 
length of a macrocell and the latency of an 
interconnect of the same length. 

Conclusion 
A hierarchy of fundamental, material, device, 
circuit, ancl system limits reveals that 10-nm 
TSI is feasible assuming the critical develop- 
ment of double-gate MOSFETs with gate 
oxide thickness in the 1.0-nm range, silicon 
channel thickness in the 3.0-nm range, and 

Fig. 5. P versus t, for all levels of the hierarchy. The blue and purple zones are forbidden by 
representative gigascale circuit and system Limits. The tiny white triangle is the allowable design 
space for a representative gigascale chip. 

channel length in the 10-nm range. 

Fig. 6. L -' versus T for 
all levels of the hierar- 
chy. The blue and pur- 
ple zones are forbid- 
den by representative 
gigascale interconnect 
circuit and system lev- 
el Limits. The tiny 
white triangle is the 
allowable design space 
for the Longest inter- 
connects of a represen- 
tative gigascale chip. 

I 
In Fig. 5ythe white trianglethe allowable 

design space for a year 2011 generation TSI 
system (20)-is separated from the forbidden g&<;(~e"~th) [cm], L 

4 I red zone imposed by fundamental S i t s  by 
over five orders of magnitude. This is observed 
by noting the separation of the loci, represent- 
ing the fundamental l&t from thermodynam- 

+a: 3+2& ics and the system switching energy limit, along 
.a. o a  Q O ( I . O . ~ O , O ~  the abscissa of the figure. This huge separation 

m is the result of the large interconnect capaci- 
tance that must be charged or discharged during 
a binary transition and the relatively large bina- 

I ry signal swing of 0.5 V. This amount of signal 
swing is necessary for large drive currents, 
leading to small circuit propagation delays and 

I hence 10-GHz clock fkquencies. 
After four decades of rapid advances in 

both the performance and productivity of sil- 
icon semiconductor technology, a systematic 
assessment of its hierarchy of physical limits 
reveals an enormous remaining potential to 

10" 1 0  loJ .- 
A i d  1 Z  1 

Delay [sl, r 
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advance from current multibillion transistor 
chips to the multitrillion transistor range of 
terascale integration. 
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Blazing Pathways Through Genetic 

Mountains 

David K. Gifford 

I t  is now widely accepted that  high-throughput data sources wil l  shed 
essential understanding on the inner workings of cellular and organism 
function. One key challenge is t o  distill the results of such experiments 
into an interpretable computational form that  wil l  be the basis of a 
predictive model. A predictive model represents the gold standard in 
understanding a biological system and wil l  permit us t o  investigate the 
underlying cause of diseases and help us t o  develop therapeutics. Here I 
explore how discoveries can be based on high-throughput data sources 
and discuss how independent discoveries can be assembled into a com- 
prehensive picture of cellular function. 

To date, most discoveries that have been Visualization-based approaches are an im- 
based on expression data have relied on data portant first step toward understanding cellu- 
visualization. For example, in this issue, Kim lar function. Expression visualization allows 
et al. describe the first large compendium of us to hypothesize potential gene-gene rela- 
Caenorhabditis elegans expression data ( I ) .  tionships that can be experimentally tested. 
The 533 microarray experiments discussed For example, when a visualization tool shows 
characterize the transcriptome of C. elegans that genes are coexpressed, it is natural to 
cells in a wide variety of growth conditions, search for transcriptional activators that are 
developmental stages, and genetic back- shared between the genes. The results of such 
grounds. The coexpression of genes in these searches are typically expressed in schematic 
experiments gives important information form, with the schematics depicting how 
about potential gene coregulation and the genes influence one another's expression and 
functions of previously uncharacterized activity. Often posttranslational modifica-
genes in C. elegans. Thus, these data will be tions of proteins play a large role in their 
an important basis for further research in the activities, and these modifications must also 
C. elegans community. 	 be captured in a schematic diagram to accu- 

Kim et al. visualize the C. elegans expres- rately predict the behavior of a system. 
sion data in three dimensions for analysis. The individual elements of understanding 
Groups of related genes in this three-dimen- that grow out of visualization and subsequent 
sional approach appear as mountains, and the experiments can be naturally organized into a 
entire transcriptome appears as a mountain model-based approach to discovery. Model- 
range. Distances in this synthetic geography based approaches codify our understanding 
are related to gene similarity, and mountain of the underlying causes of data variation that 
heights are related to the density of observed is observed in data visualization, and the 
genes in a similar location. A three-dimen- integration of results into a system model is 
sional approach is a departure from the com- necessary for broad understanding and in- 
mon practice of analyzing expression data in sight. In a model-based approach, competing 
a single dimension. Single-dimension analy- models that describe a function are construct- 
sis places genes in a total ordering, limiting ed, and the models are scored against exper- 
our ability to see important relationships. imental data. The score of a model describes 

the likelihood of observing the experimental 
data given the model under consideration.

Department of Computer Science, Massachusetts In- 
stitute of Technology, 200 Technology Square, Cam- Thus, models provide a principled way of 
bridge, M A  02139, USA. E-mail: gifford@mit.edu judging the relative likelihood of competing 

hypotheses. When many models have rough- 
ly the same score, it is possible to determine 
the features that they share in common. The 
shared features of high-scoring models rep- 
resent biological relationships that are likely 
to be important. 

Despite the extraordinary discriminatory 
benefits of models, many biologists retreat 
from this approach with concerns about com- 
plex differential equations, unintelligible 
computer commands, and a feeling of unease 
that researchers will not be able to grasp the 
subtleties of what the models are saying. 
Furthermore, many model-based approaches 
require the values of reaction parameters that 
we do not yet know and that are difficult to 
approximate from contemporary high-
throughput data sources. New approaches to 
modeling that are intuitive, can capture high- 
level structure, and are parameter-free would 
overcome these problems and motivate more 
biologists to capture and analyze in compu- 
tational form what they suspect to be true. 

Structured computational models, and in 
particular graphical models, have recently been 
proposed as a parameter-free approach for mod- 
eling biological network structure (2, 3). Just 
like the schematic diagrams familiar to biolo- 
gists, a graphical model captures the qualitative 
relationships between variables. Vertices in a 
graphical model represent variables such as 
mRNA expression levels, protein levels, envi- 
ronmental conditions, genotype, and phenotype. 
Edges in a graphical model describe relation- 
ships between variables and can be annotated 
with typical biological semantics, such as en- 
hances or represses. 

Once constructed, a graphical model rep- 
resents both a conceptual understanding of a 
biological system and a computational means 
for predicting the effects of pertubations to 
the system. For example, Fig. 1 illustrates 
how a graphical model can explain data in a 
form that is simpler and more easily interpret- 
able compared with conventional clustering di- 
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