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sponsors development of the information tech- 
nology infrastructure necessary for a National 
Virtual Observatory (NVO). There is a close 
cooperation with the particle physics commu- 
nity through the Grid Physics Network 
(GriPhyN). NASA supports astronomy mission 
archives and discipline data centers while de- 
veloping a roadmap for their federation. 

Impressively, these projects are all coop- 
erating, and are working toward a future 
Global Virtual Observatory to benefit the in- 
ternational astronomical community and the 
public alike. There are similar efforts under 
way in other areas of science as well. The 

Virtual Observatory has had and will have 
significant interactions with other science 
communities, both learning from some and 
providing a model for others. 
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Pathway Databases: A Case Study in 

Computational Symbolic Theories 


Peter D. Karp 

A pathway database (DB) is a DB that describes biochemical pathways, 
reactions, and enzymes. The EcoCyc pathway DB (see http://ecocyc.org) 
describes the metabolic, transport, and genetic-regulatory networks of 
Escherichia coli. EcoCyc is an example of a computational symbolic theory, 
which is a DB that structures a scientific theory within a formal ontology 
so that it is available for computational analysis. It is argued that by 
encoding scientific theories in  symbolic form, we open new realms of 
analysis and understanding for theories that would otherwise be too large 
and complex for scientists t o  reason wi th  effectively. 

What happens when a scientific theory is too 
large to be grasped by a single mind? De- 
cades of experimentation by molecular biol- 
ogists to characterize the molecular compo- 
nents of single cells, combined with recent 
advances in genomics, have thrust biology 
into the position where the theoretical under- 
standing of a system such as the biochemical 
network of E. coli is too large for a single 
scientist to grasp. This situation has a number 
of disturbing consequences: It becomes ex- 
tremely difficult to determine whether such 
theories are internally consistent or are con- 
sistent with external data, to refine theories 
that are inconsistent, or to understand all of 
the implications of such large theories. As 
more details of such a complex system are 
elucidated experimentally, it is not so clear 
that our understanding of the system as a 
whole increases if the new understanding 
cannot be integrated with the larger theory it 
pertains to in a coherent fashion. 

In this &cle I argue that as scientific theo- 
ries reach a certain complexity, it becomes es- 
sential to encode those theories in a symbolic 
form within a computer database (DB). I de-
scribe pathway DBs as a case study in encoding 
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scientific theories in computers. Although the 
scientific community clearly accepts the need to 
encode the ever-expanding quantity of scientif- 
ic data within DBs, DBs of scientific theories, 
such as a theory describing the transcriptional 
regulation of E. coli genes, are much rarer. By 
data I mean measurements made from individ- 
ual experiments; by theory I mean relationships 
inferred from the interpretation and synthesis of 
many experimental results. The biological sci- 
ences are particularly well suited to the DB 
approach because many theories in biology 
have a qualitative nature; they describe seman- 
tic relationships between systems with many 
different molecular components, and the causal 
relationships between these components have 
been measured in a qualitative rather than a 
quantitative fashion. The DB approach is prob- 
ably less appropriate for quantitative theories 
that are best described by systems of differen- 
tial equations, or other types of mathematical 
models in analytical form. 

The theory of the E. coli metabolic network 
is an example of a theory whose size and com- 
plexity are too large for a mind to grasp. The 
metabolic network is essentially a chemical pro- 
cessing factory within each E. coli cell that 
enables the organism to convert small molecule 
chemicals that it fmds in its environment into the 
building blocks of its own structures, and to 
extract energy from those chemicals. The E. coli 

metabolic network, illustrated in Fig. 1, involves 
791 chemical compounds organized into 744 
enzyme-catalyzed biochemical reactions (1).On 
average, each compound is involved in 2.1 re- 
actions. I posit that the majority of scientists 
cannot grasp every intricate detail of this com- 
plex network. Omission of even a single step 
from the network can be fatal for the cell. 

One might argue that the biomedical litera- 
ture is one embodiment of the theory of the E. 
coli metabolic network, and that as the biomed- 
ical literature enters electronic form, we need 
not be concerned with the size and complexity 
of biology theories. Although efforts to bring 
the biomedical literature online are tremendous- 
ly usel l ,  there are serious limitations to what 
they will achieve: We cannot compute effec- 
tively with theories within the biomedical liter- 
ature. Natural-language texts still remain large- 
ly opaque to computers, despite many advances 
in natural-language processing. For example, 
one relatively simple question we might wish to 
ask of the E. coli metabolic network is how 
many of its reaction steps are catalyzed by 
multiple enzymes, meaning they have backup 
systems, and therefore would targeting a drug 
toward one of the enzymes catalyzing those 
steps be ineffective? Answering this question 
by using a pathway DB such as the EcoCyc 
pathway DB is trivial, but answering this ques- 
tion by processing the biomedical literature 
with a computer program would earn the pro- 
grammer a Ph.D. in computer science. 

Pathway Databases 
A pathway is a linked set of biochemical reac- 
tions-linked in the sense that the product of 
one reaction is a reactant of, or an enzyme that 
catalyzes, a subsequent reaction. A pathway DB 
is a bioinformatics DB that describes biochem- 
ical pathways and their component reactions, 
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enzymes, and substrates. Most pathway DBs 
created to date describe metabolic pathways, but 
pathway DBs containing signaling and genetic- 
regulatory pathways are now beginning to a p  
pear. Most pathway DBs contain computable 
descriptions of pathways structured by using a 
formal ontology, as opposed to textual or serni- 
structured descriptions of pathways. A pathway/ 
genome DB (PGDB) integrates pathvyay infor- 
mation with .information about the complete 
genome of an organism A PGDB is one type of 
model-organism DB (MOD), although -most 
MODS do not contain pathway information. 

Historically, pathway DBs arose at the inter- 
section of genomics, biochemistry, DBs, and 
artificial intelligence. Genome DBs aim to cat- 
alog the molecular parts of an organism whose 
genome has been sequenced. They generally 
focus more on describing the genome map and 
sequence of the organism than they do on de- 
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scribing the functions of each gene in a struc- 
tured computable fashion (functions are de- 
scribed using short English phrases). Biochem- 
ists have had a long-standing effort to catalog 
the catalytic activities of known enzymes, in 
printed form. 

The EcoCyc project (2, 3) began in 1992 
with the goals of integrating within a single DB 
the then incomplete genome map of E. coli, with 
detailed descriptions of the enzymes and path- 
ways of E. coli metabolism. Thus, EcoCyc is a 
PGDB. By 1996, EcoCyc contained more than 
100 pathways and 520 enzymes, entered by 
Riley's group at the Marine Biological Labora- 
tory. Enzymes were connected to their genes, 
and to the genome sequence, when known. The 
DB contained detailed descriptions of the reac- 
tion catalyzed by each enzyme, the range of 
substrates the enzyme would accept, the chem- 
icals known to activate or inhibit the enzyme, 

and its subunit structure. The DB also described 
each small molecule enzyme substrate. EcoCyc 
pathways include those for biosynthesis of cel- 
lular building blocks such as amino acids and 
cell wall components, those for catabolism of 
the different carbon sources that E. coli can 
utilize, and those for extracting energy from 
chemical compounds. 

In 1998 we integrated the complete genome 
sequence of E. coli determined by the Blattner 
laboratory into EcoCyc (4), and we expanded 
the EcoCyc collaboration to include additional 
biologists curating information on other aspects 
of the E. coli biochemical machinery: the trans- 
porters that move small molecules from the 
mtside of the cell to the inside, and the mech- 
anisms by which E. coli gene expression is 
:ontrolled at the transcriptional level. Version 
5.6 of EcoCyc released in June 2001 describes 
162 E. coli transporters and 629 transcription 

Fig. 1. An overview of the full known metabolic map of E. coli. Each blue and 
yellow line in this diagram represents a single enzyme-catalyzed reaction; 
each node represents a single metabolite. Glycolysis is in the middle of ttie 
diagram, biosynthetic pathways are to its left, catabolic pathways are to its 
right, and reactions that have not been assigned to a pathway are grouped 
along the far right-hand side. The shape of each metabolite encodes its 
chemical class: for example, amino acids are shown as triangles, and shaded 
nodes indicate phosphorylated compounds. This diagram was produced 

by combining automated graph layout algorithms with some manual posi- 
tioning of regions of this graph. The reactions highlighted in yellow show the 
results of a species comparison between E. coli and the metabolic network 
predicted for the yeast 5. cerevisiae from its genome by the PathgLogic 
program. Reaction lines in blue indicate reactions found in E. coli only; 
reaction lines in yellow indicate reactions found in both E.' coli and 5. 
cerevisiae. The species comparison does not generally include the transport 
reactions shown in the cellular membrane that surrounds the diagram. 
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units within E. coli, and a total of 165 E. coli 
metabolic pathways. 

Other pathway DBs include KEGG (5 ) ,  
WIT (6 ) ,MetaCyc (2),the Connections Map 
DB (see www.stke.org), and UM-BBD (7); 
for a review see (8). 

In parallel with the development of EcoCyc, 
SRI developed a software environment called 
the Pathway Tools (9) that supports query, anal- 
ysis, and visualization operations for PGDBs. 
The Pathway Tools allows users to query Eco- 
Cyc DB by a variety of criteria including name 
matching and classification hierarchies (such as 
a taxonomy of metabolic pathways). Query re- 
sults are displayed by using a library of visual- 
ization tools that automatically generate draw- 
ings of metabolic pathways, reactions, chemical 
compounds, chromosomes, and transcription 
units. A visualization tool called the Overview 
diagram depicts the full metabolic map of E. 
coli and its transporters. This tool is a powerful 
device for understanding global properties of the 
E. coli metabolic network. For example, the user 
can ask the software to highlight all occurrences 
of a given metabolite to understand all the path- 
ways that can operate on it. The user also can 
highlight all metabolic reactions that are activat- 
ed or inhibited by a specific metabolite at the 
substrate level, or whose transcription is con- 
trolled by a given transcription factor, to un- 
derstand the regulation of the metabolic 
network. We have also developed a tech-
nique for painting gene expression data sets 
onto the Overview, thus providing an orga- 
nizing framework to aid the interpretation 
of these complex data sets in a path-
way context (see http://ecocyc.org:l555/ 
expression.htm1). 

More recently, the Pathway Tools has been 
generalized so that it can manage PGDBs for 
multiple organisms simultaneously. In the 
course of 1 week, a user of the PathoLogic 
component of the Pathway Tools (see below) 
can create a new PGDB for a sequenced micro- 
organism. Once created, users can refine the 
PGDB by using a suite of interactive editors 
within the Pathway Tools, and can publish the 
PGDB on the Web. We have thus created a 
reusable "generic model-organism DB" toolkit 
that is now being used to create PGDBs as 
resources for the scientific communities that 
research many microorganisms. The SRI Web 
site at http://ecocyc.org contains PGDBs for 
eight microorganisms that were created by using 
the Pathway Tools. 

Computing with Biological Theories in 
Pathway Databases 
The arbficial intelligence subfield of knowledge 
representation is concerned with devising sym- 
bolic encodings of complex collections of infor- 
mation in a manner that supports inference (rea- 
soning) processes across that information. Key 
strategies in knowledge representation include 
(i) devising an ontology (DB schema) that cap- 

tures important semantic distinctions in an ac- 
curate fashion, and that precisely defmes the 
meaning of different DB fields, (ii) rigorously 
following the definitions in that ontology to 
encode a theory w i t h  the DB, and (iii) extend- 
ing the ontology when new domain concepts are 
found to fall outside the scope of the ontology. 
The EcoCyc ontology (10) contains about 1000 
classes that encode key concepts in biochemis- 
try and molecular biology, and more than 200 
slots that define properties of and relationships 
among those classes. 

The EcoCyc DB is structured according to 
this ontology and consists of an interconnected 
web of frames (objects) stored in a frame knowl- 
edge representation system (similar to an object- 
oriented DB). Each frame represents a distinct 
biological object (such as a gene or a protein), 
and the labeled connections between those 
frames represent distinct semantic relationships 
among the objects, such as the relationship of a 
gene to its protein product, or the relationship of 
a protein to a reaction that it catalyzes. 

Reasoning across such a DB is accom-
plished through computations that traverse this 
network, and represents a distinct nonnumerical 
style of computing that, in our experience, most 
scientists are not familiar with. It is symbolic 
computing that allows us to exploit the power of 
computational qualitative theories. The follow- 
ing sections explore global computations that 
can be applied to pathway DBs. 

Computing global properties of a pathway 
DB. By integrating the fragments of biological 
theories that are scattered through the biomedi- 
cal literature, we can discover global properties 
of those theories that were heretofore elusive. 
Ouzounis and Karp wrote a set of programs that 
computed statistics on relationships in the DB 
that showed how very simplistic is the classical 
notion of one gene, one enzyme, and one reac- 
tion (I). The program found that E. coli contains 
100 enzymes that catalyze more than one bio- 
chemical reaction, 68 cases where the same 
reaction is catalyzed by more than one enzyme, 
and 99 cases where one reaction is used in 
multiple E. coli pathways. 

More recently, Karp and Collado studied the 
global properties of the E. coli genetic network 
stored within EcoCyc, which is the most de- 
tailed model of the genetic network of any or- 
ganism. The model describes the control of 630 
E. coli transcription units (containing 27% of all 
E. coli genes) by 97 transcription-factor pro- 
teins. Figure 2 shows a visualization of the E. 
coli genetic network defined by EcoCyc. A 
number of interesting properties are present in 
this network. A significant portion of the net- 
work is unconnected, that is, 50 of the 85 tran- 
scription factors do not regulate other transcrip- 
tion factors-they regulate other genes that do 
not encode transcription factors, and, in some 
cases, they regulate themselves. The network is 
not very d e e p i t  has a maximum depth of three 
nodes. Only two transcription factors (CRP and 

Fnr) directly control more than two other tran- 
scription factors. Aside from autoregulation 
(when a transcription factor directly controls its 
own expression), there are only two feedback 
loops in ths  graph (between MarR and MarA, 
and between GutR and GutM). Negative auto- 
regulation is the dominant form of feedback. 

Jeong et al. studied the topology of the pro- 
tein interaction network for the yeast Saccharo-
myces cerevisiae, and found that the network 
topology is heterogeneous and scale-free, mean- 
ing that there are relatively few highly connect- 
ed nodes, and that the probability of finding a 
network node (protein) with many connections 
(interactions) follows a power law (11). They 
also found that deletion of proteins with high 
numbers of interactions was more likely to be 
lethal to the organism. In earlier work, they 
found that metabolic networks are also scale- 
free (12). 

Pathway Prediction from Sequenced 
Genomes 
Another form of inference with a Pathway 
DB occurred in 1995 when Karp, Ouzounis, 
and Pale) demonstrated that the EcoCyc DB 
could be used to predict the metabolic net- 
work of an organism from its genome (13). 
The PathoLogic program that they developed 
takes two inputs: an annotated genome se-
quence that includes the locations and pre- 
dicted functions of genes within the genome, 
and a reference pathway DB. The output 
produced by the program is a new PGDB that 
includes a set of pathways predicted to be 
present in the organism by PathoLogic. 
PathoLogic uses SRI's MetaCyc pathway DB 
(2) as the reference DB; MetaCyc contains 
450 pathways from many different organ- 
isms. PathoLogic matches enzymes in the 
annotated genomes against enzymes in the 
MetaCyc DB and computes a score for the 
presence of different pathways on the basis of 
the number of matching enzymes, and their 
positions within the pathway. 

Prediction of Pathway Flux Rates 
Schilling and Palsson have devised a nu- 
merical method to predict the reaction flux 
rates for the entire metabolic network of an 
organism (14). Given experimental mea-
surements of the mass composition of me- 
tabolites within the cell, and a list of all 
metabolic reactions known to occur in the 
cell (such as those provided by EcoCyc), an 
optimization procedure is used to calculate 
the equilibrium rates at which substrates 
are processed by each metabolic reaction. 
The flux rates predicted by their technique 
have been verified experimentally. An ex- 
tension of this computational technique 
was used to predict the lethality of E. coli 
deletion mutants; it correctly predicted the 
growth potential of mutant strains in 86% 
of the genes examined (15). 

2042 14 SEPTEMBER 2001 VOL 293 SCIENCE www.sciencernag.org 

http://ecocyc.org:l555/
http://ecocyc.org


Consistenc of Metabolic Network 
with ~ e l l u g r  Growth-Media 
Requirements 

The growth of E. coli can be supported by a 
number of alternative chemically characterized 
growth media, such as a combination of glu- 
cose, ammonia, and minerals. The E. coli met- 
abolic network is able to synthesize all of the 
compounds essential for its growth (such as the 
amino acids and nucleoside triphosphates) fiom 
these simple precursors. Therefore, it should be 
possible to verify the completeness and correct- 
ness of the theory of the E. coli metabolic 
network embodied in the EcoCyc DB by com- 
putationally propagating the known chemical 
nutrients of E. coli through the EcoCyc net- 
work, and determining whether the resulting 
chemical products included all of the com- 
pounds known to be essential for growth. 

A qualitative simulation of the E. coli met- 
abolic network is obtained-qualitative in the 
sense that the approach is not attempting to 
predict the quantities of chemical products that 
E. coli metabolism produces over time, but to 
predict ifcertain chemical products can be pro- 
duced from a given set of precursors. This qual- 
itative simulation was obtained by using a com- 
putational device called a production system, 
which is the basis of many expert systems. A 
production system consists of a set of rules 
(corresponding to reactions) and a set of propo- 
sitions currently listed as true in the working 
memory of the production system (which corre- 
spond to metabolites). Each rule is of the form A 
A B + C A D, meaning that if A and B are 
present in working memory, then add the pres- 
ence of C and D to working memory. A pro- 
duction-rule inference engine repeatedly search- 
es for a rule for which all of the propositions on 
its left side are present in working memory, and 
fires the rule by adding the propositions on its 
right side to working memory. 

Every metabolic reaction of the form A + 
B = C was computationally translated into a 
production rule of the form A A B + C. And the 
working memory of the production system was 
initialized to contain a proposition for each 
known growth nutrient of E. coli. The initial 
outcome of the resulting qualitative simulation 
(1 6) was that known E. coli growth media could 
not produce the compounds essential for E. coli 
growth. Examination of these results revealed (i) 
the existence of bugs in the EcoCyc DB (since 
corrected); (ii) the existence of metabolic inter- 
mediates required for the production of some 
essential compounds, but for which the meta- 
bolic synthesis route is unknown; and (iii) that 
we had neglected to include certain important 
precursors in our simulation, such as some pro- 
teins that are metabolic substrates (such as thi- 
oredoxin and acyl carrier protein). Once these 
discrepancies were resolved (16), it could be 
verified that all 41 essential compounds could 
be produced tkm the M63 minimal growth 
medium. 

Discussion 
Pathway DBs have several purposes. They are 
encyclopedic references for pathway informa- 
tion that can be queried by scientists who want 
to search out specific facts, or search for pat- 
terns. They can also be queried by computer 
programs that perform global analyses and pat- 
tern searches. The symbolic nature of pathway 
DBs means that many types of programs and 
inference procedures can be written to compute 
with this information. Although one might argue 
that computational theories have existed for 
many years in the form of Fortran programs that 

model physical systems, the procedural nature 
of a Fortran program means that it can be used 
in only one way, namely, to be executed. The 
knowledge representation community has long 
recognized the flexibility that results from sym- 
bolic representations (1 7). 

Pathway DBs are a mechanism for easing 
the cognitive overload produced by genome 
data: An analysis of the pathway content of a 
microbial genome reduces the complexity of 
that genome by allowing the scientist to think in 
terms of hundreds of pathways rather than in 
terms of thousands of gene products. Similarly, 

Fig. 2. A visualization of the 
known network of transcription 
factors in EcoCyc. Each circle 
represents a single transcription 
factor. A blue arrow from protein 
A t o  protein B indicates that A 
activates the transcription of 6. 
Pink arrows indicate repression 
of transcription, and yellow ar- 
rows represent both positive and 
negative regulation of transcrip- 
tion. Circles with a blue outline 
represent positive self-regula- 
tion. Pink circles represent nega- 
tive self-regulation. Yellow cir- 
cles with a thick outline repre- 
sent both positive and negative 
self-regulation. Circles with a 
thin yellow outline do not regu- 
late their own transcription. 
Thus, for example. IHF represses 
transcription of its own genes 
and those of OmpR, but acti- 
vates transcription of the genes 
for TdcA. The majority of tran- 
scription factors depicted here 
regulate the transcription of 
many other genes; this diagram 
shows only regulation of other 
transcription factors. 
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pathway DBs can impose an organizing frame- 
work on complex gene expression (or proteom- 
ics) data sets that facilitates their interpretation. 

Future challenges for pathway DBs include 
niodellng of large signaling networks in eukary- 
otic organisms; performing automated layout 
simllar to that shown in Fig. 1 of the much larger 
pathway networks that exist in eukaryotic or- 
ganisms, and supporting methods for user nav- 
igation through such a larger pathway network: 
defining standard ontologies for exchange of 
pathway data among different DBs and applica- 
tion programs; and creating new analysis algo- 
rithms for extracting new insights from pathway 
networks. such as to aid drug design by analyz- 
ing diseased human pathway networks, or pre- 
dicting optimal dmg targets for antimicrobial 
drug design. 

One lesson for computer scientists provid- 
ed by pathway DBs (and by other bioinfor- 
matics applications) concerns the importance 
of DB content to solving computational prob- 
lems. Most computer scientists focus their 
attention on algorithms, thinking that the best 
way to solve a hard computational problem is 
through a better algorithm. However, for 
problems such as predicting the pathway 
complement of an organism from its genome. 
or predicting metabolic products that an or- 
ganism can produce from a given growth 
medium. I know of no algorithms that can 
solve these problems without being coupled 
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with an accurate and well-designed pathway 
DB. 

By encoding scientific theories in a sym- 
bolic DB. scientists can more easily check 
those theories for internal consistency and for 
consistency with external data. can more eas- 
ily refine theories that are found to violate 
external data, and can more easily assess the 
global properties of the system that such a 
theory describes. The genome revolution is 
increasing the need for pathway DBs in the 
biological sciences, and similar develop-
ments will occur in other sciences. However, 
effective implementation of this paradigm is 
hampered because most biologists (and most 
other scientists) receive essentially no educa- 
tion in DBs or knowledge representation. Al- 
though many scientists learn a computer pro- 
gramming language as part of their under- 
graduate education, introductory program-
ming courses completely omit DB and 
knowledge representation concepts such as 
data models, ontologies, DB query languag- 
es, logical inference, DB design, and formal 
grammars-which explains why many bio- 
logical DBs do not have a regular syntactic 
structure. much less a consistent or precisely 
defined semantics. As science enters the in- 
formation age, it is crucial that the computer- 
science education that scientists receive cov- 
ers symbolic computing as well as numerical 
computing. 
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Limits on Silicon Nanoelectronics for 

Terascale Integration 


James D. Meindl,* Qiang Chen, Jeffrey A. Davis 

Throughout the past four decades, silicon semiconductor technology has 
advanced at exponential rates in both performance and productivity. 
Concerns have been raised, however, that the limits of silicon technology 
may soon be reached. Analysis of fundamental, material, device, circuit, 
and system limits reveals that silicon technology has an enormous re- 
maining potential t o  achieve terascale integration (TSI) of more than 1 
tril l ion transistors per chip. Such massive-scale integration is feasible 
assuming the development and economical mass production of double- 
gate metal-oxide-semiconductor field effect transistors wi th gate oxide 
thickness of about 1 nanometer, silicon channel thickness of about 3 
nanometers, and channel length of about 10 nanometers. The develop- 
ment of interconnecting wires for these transistors presents a major 
challenge t o  the achievement of nanoelectronics for TSI. 

Silicon technology has advanced at exponen- 
tial rates in both performance and productiv- 
~tythroughout the past four decades. From 
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1960 to 2000, the energy transfer associated 
with a binary switching transition-the ca-
nonical digital computing operation-de-
creased bv about five orders of magnitude 

u 


and the number of transistors per chip in- 
creased by about nine orders of magnitude. 
Such exponential advances must eventually 
come to a halt imposed by a hierarchy of 
physical limits. The five levels of this hierar- 

chy are defined as fundamental, material. de- 
vice, circuit, and system (1).A coherent anal- 
ysis of the key limits at each of these levels 
reveals that silicon technology has an enor- 
mous remaining potential to achieve TSI of 
more than 1 trillion transistors per chip. with 
critical device dimensions or channel lengths 
in the 10-nm range. This potential represents 
more than a three-decade increase in the 
number of transistors per chip and more than 
a one-decade reduction in minimum transis- 
tor feature size compared with the state of the 
art in 2001. Fundamental physical limits that 
are independent of the characteristics of any 
particular material, device structure, circuit 
configuration, or system architecture are vir- 
tually impenetrable barriers to future advanc- 
es of TSI. 

Binary switching transitions implemented 
with transistors are indispensable to perform- 
ing computation in a digital system. The en- 
ergy transfer per binary transition is a reveal- 
ing metric for comparing the performance of 
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