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its extensive S haplotype-associated polymor­
phism (19,20). SLG has been shown to migrate 
on SDS-PAGE as a cluster of molecular mass 
forms (Fig. 2D) (21). However, only one of 
these SLG6 forms bound to SCR6 beads, sug­
gesting a degree of specificity in the observed 
SLG-SCR6 binding. Additional evidence for 
specificity is provided by the finding that treat­
ment of £y>2 stigma extracts with SCR6 beads 
failed to pull down detectable levels of SLG2 or 
of the S-locus related SLR1 and SLR2 gene 
products (Fig. 2D), all of which exhibit only 
65% amino acid sequence identity to SLG6. 
SLG is thought to function, at least in some 
cases, as an accessory molecule that enhances 
the SRK-mediated SI response (3), possibly by 
contributing to the stabilization and proper mat­
uration of SRK (18). The interaction observed 
between SCR and SLG suggests that some 
forms of SLG might also function in ligand 
binding. However, the physiological impor­
tance of this relatively weak interaction remains 
to be determined. 

Our results demonstrate that SCR inter­
acts with the ectodomain of SRK. Apparent­
ly, the SRK-SCR interaction does not require 
additional components specific to the stigma 
and pollen surfaces, because the interaction 
was observed between recombinant proteins 
purified from Nicotiana leaves and bacteria. 
The data indicate that specificity in the SI 
response results from S haplotype-specific 
molecular interaction of SCR and SRK, 
which would selectively trigger activation of 
self SRK and a pollen-inhibitory chain of 
events. Analysis of receptor-ligand interac­
tions demonstrated by SRK-SCR and by 
CLV1-CLV3 of Arabidopsis thaliana (22) 
should provide useful paradigms for the study 
of transmembrane receptor signaling and of 
the function and regulation of small diffusible 
peptide ligands in plants. 
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nogenic glucosides (4-6), which in turn pro­
tect the insect against predators (7). To assess 
the effect of cyanogenesis, it is necessary to 
study insects that have not coevolved with 
cyanogenic glucosides. Such insects are 
found among those that specifically feed on 
cruciferous plants, which do not produce cy­
anogenic glucosides. To render investigations 
in such an experimental system possible, we 
transferred the pathway for cyanogenic glu-
coside biosynthesis into the cruciferous plant 
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Fig. 1. HPLC analysis of A. thaliana plants con- 
taining either the entire dhurrin biosynthetic 
pathway or the cytochrome P450-catalyzed 
part. a, CYP79A1 and CYP71E1; b, CYP79A1, 
CYP71E1, and sbHMNGT; c, wt. Each UV trace 
represents equal amounts of leaf material. 

species Arabidopsis thaliana by genetic en- 
gineering and studied the effect of cyanogen- 
ic glucosides in plant defense against the 
crucifer-specialist flea beetle Phyllotreta 
nemorum. 

Biosynthesis of the cyanogenic glucoside 
dhunin in Sorghum bicolor is highly channeled 
(8)and catalyzed by two multifunctional micro- 
soma1 cytochromes P450 (CYP79A1 and 
CYP71E1) (9-13) and a soluble UDPG-glu- 
cosyltransfeme (sbHMNGT) (14) [Web fig. 1 
(IS)]. We transformed A. thaliana plants ex- 
pressing the genes encoding CYP79A1 and 
CYP71E1 (16) with a recombinant plasmid 
conferring gentamycin resistance and encoding 
sbHMNGT (1 7). Newly generated plants con- 
taining the dhunin pathway were kanamycin- 
and gentamycin-resistant, which facilitated 
their selection. 

The strategy resulted in several indepen- 
dent lines that were examined for their ability 
to svnthesize dhurrin. U ~ o n  administration of 
radiolabeled tyrosine to detached leaves and 
analysis of methanol (MeOH) extracts by 
thin-layer chromatography, one predominant 
radioactive product comigrating with authen- 
tic dhurrin was observed. High-performance 
liquid chromatography-mass spectrometry 
(HPLC-MS) analyses (18) showed that the 
product had the same retention time, ultravi- 
olet (UV) spectral properties, and molecular 
mass as the dhunin standard (Fig. 1). 
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Fig. 2. A. thaliana 
plants expressing both 

HO/03;" HOm;p""HO 4-cYP7,l- CYP79A1 and CYP71E1, 
(2)-phydroxyphenyl- tyrosine but not sbHMNGT, ac- 

acetaldoxime cumulate glucosides of 
I benzoic acid, a product 

CYP71E l  of p-hydroxymande-

4 lonitrile decomposition. 
OHeCN-HdH phydroxybenzaldehyde 

H 
I 

p-hydroxymandelonitrile 4 
0 

I 
sbHMNGT 

I H phydroxybenzoic acid 

pglucosyloxy- phydroxy- pglucosyloxy- 
dhurrin benzoic acid benzoylglucose benzoylglucose  

Four-week-old transgenic A. thaliana activities of the pathway for dhuninbiosynthe-
plants contained as much as 4 + 0.5 mg of sis seemed to be adequately balanced. Trans- 
dhurrin per gram of fresh weight (gfw) genic plants lacking sbHMNGT produce p- 
(19). This level of dhurrin is similar to that glucosyloxy-benzoylglucose, p-glucosyloxy-
found in seedlings of S. bicolor (20), dem- benzoic acid, and p-hydroxybenzoylglucose 
onstrating the ability to efficiently integrate (Fig. 1). Radiolabeling experiments showed 
the dhurrin biosynthetic pathway into A. that these glucosides are derived from p-hy- 
thaliana. Transgenic A. thaliana lines con- droxymandelonitrile that had decomposed into 
taining -1 mg of dhurrinlgfw displayed no HCN and p-hydroxybenzaldehyde, of which 
apparent phenotypic differences as com- the latter had been finally oxidized into p-hy- 
pared with the wild-type (wt) plants, and droxybenzoic acid (Fig. 2). None of the hun- 
lines containing higher levels of dhurrin dred or more predicted A. thaliana (24) second- 
had only small reductions in growth [Web ary plant product glucosyltransferases are capa-
fig. 2 (15)l. Therefore, the diversion of ble of converting the aglycone p-hydroxyman- 
tyrosine toward dhurrin biosynthesis and delonihile into the corresponding cyanogenic 
the storage of dhurrin did not cause inher- glucoside in planta. Thus, the glucosyltrans- 
ent metabolic problems. As with other feme activity provided by sbHMNGT is nec- 
plants containing cyanogenic glucosides, essary to obtain dhunin production in trans- 
the transgenic A. thaliana plants released genic A. thaliana. 
high levels of HCN, up to -2 ~moligfw, The flea beetle P. nemorum (Coleoptera: 
upon tissue damage (21). Likewise, dia- Chrysomelidae: Alticinae) accepts wt A. 
lyzed protein extracts from A. thaliana hy- thaliana as a food source (25) and as a spe- 
drolyzed dhurrin (22). Therefore, an endog- cialist crucifer-feeder is not expected to 
enous P-glucosidase with dhurrin hydrolyz- have encountered cyanogenic glucosides 
ing activity is present in A. thaliana. during its recent evolutionary history. In 

The expression of the CYP79A1 gene in A. choice tests with adult beetles (26), the 
thalianaresults in the production ofp-hydroxy- consumption of leaf-disc material from 
benzylglucosinolate as a result of metabolic transgenic A. thaliana plants containing 
cross talk between the pathways for cyanogenic dhurrin was compared to consumption of 
glucoside and glucasinolate synthesis (23). A. wt plants (Fig. 3A). The beetles consumed 
thaliana plants expressing all three dhurrinbio- up to 80% less of the transgenic leaf-disc 
synthetic pathway genes also accumulated p- material (D + 95%, confidence limit = 
hydroxybenzylglucosinolate,although at much 0.70 ? 0.10). Consumption of leaf-disc 
lower levels (22), whereas dhurrin was the only material from the transgenic lines express- 
product seen to accumulate in high abundance ing the two cytochrome P450 genes 
(Fig. 1). As with S. bicolor (8), pathway inter- (CYP79A1 and CYP71E1) (D = 0.06 I+-
mediates in these A. thaliana plants were hardly 0.16), or the UDPG-glucosyltransferase 
detectable. Thus, although all three sorghum gene (sbHMNGT) (D = 0.03 ? 0.06), or 
sequences were driven by the cauliflower mo- containing the two empty expression vec- 
saic virus (CaMV) 35s promoter in the trans- tors (D = -0.18 + 0.23) was not signifi- 
genic A. thaliana plants, the inhvidual enzyme cantly different from the consumption of 
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leaf-disc material from wt plants. There- dhurrin (G = 149.9, df = 5, P < 0.0001) 
fore, the deterrent effect was directly attrib- (Fig. 3C). As for the adult insects, mine 
utable to the presence of dhurrin. initiation and larval survival on transgenic 

Normally, after hatching from eggs laid plants expressing the cytochrome P450 
in the soil, the larvae of P. nemorum climb genes only, the glucosyltransferase gene 
a plant in search of a suitable site for only, or containing the two empty expres- 
initiation of a leaf mine. In nonchoice bio- sion vectors were not significantly different 
assays with newly emerged flea beetle lar- from those on wt (mine initiation 
vae (27), the presence of dhurrin in the rates: G = 4.39, df = 3, P > 0.05; survival 
transgenic plants reduced the number of rates: G = 1.93, df = 3, P > 0.05). 
leaf mines initiated. (G = 190.0, df = 5, Thus, the pathway for biosynthesis of 
P < 0.0001) (Fig. 3, B and C). All larvae the cyanogenic glucoside dhurrin can be 
that did not initiate mines died. Of the transferred from sorghum into the acyano- 

Supelcosil LC-ABZ+PIus column (size 250 X 4 mm; 
Supelco, Bellefonte. PA) equilibrated in 4% (vlv) 
CH,CN and 0.1% (vlv) HCOOH (flow rate, 0.5 
mumin). After a sample application, the column 
was washed for 2 min to  remove glucosinolates 
and other ions. Elution was initiated with a linear 
gradient developed over 40 min to  a concentration 
of 32% (vlv) CH,CN and 0.1% (vlv) HCOOH, after 
which a steeper gradient to  80% (vlv) CH.CN and 
0.1% (vlv) HCOOH was applied: ~lution-profiles 
were monitored at wavelengths of 200 to  300 nm. 
Components of interest were subsequently intro- 
duced into a Bruker Esquire-LC ion-trap mass spec- 
trometer. For MS analysis, HPLC solvents contained 
50 p M  NaCl, the mass spectrometer was run in  
positive ion mode, and the [mass + Na]+ adduct 
ions were used for identification. Dhurrin [Extra- 

larvae that did initiate mines, a higher mor- genic model plant A-thaliana by the use of synthese. Cena~. France), ~ - g l u c o s ~ l o ~ - ~ e n z o i c  

tality was observed. on leaves containing genetic engineering. The accumulation of ~ ~ ~ ~ ~ ~ ; , " ~ ~ ~ ~ ~ ~ f ~ ~ ~ ~ ~ ~ ~ Y ~ , " e f ~ z ~  
substantial amounts of dhurrin does not as authenticstandards. 
appear to pose any inherent physiological 19. Dhurrin levels were determined by analysis of MeOH- 

problems for the transgenic A. thaliana and extracted leaf tissue by HPLC (78). with am~gdali" 
(Sigma) as an internal standard. Four individual m a -  

confers resistance to the flea beetle p- surements were carried out for each transgenic line, 
nemorum, demonstrating that cvanogenic and dhunin levels were calculated by peak integra- 

B% survival W %  mortatity 

Fig. 3. A. thaliana leaves containing dhurrin 
inhibit flea beetle and larvae feeding. (A) 
Adult beetles fed extensively only on leaves 
containing no dhurrin. (B) Larvae (indicated 
by arrows) frequently initiated no mines on 
leaves containing dhurrin, although attempts 
were made to feed (indicated by circles). 
Scale bar, 2.5 mm. (C) Nearly all larvae (98%) 
presented to leaves containing about 4 mg of 
dhurrinlgfw died. 

- - 
glucosidei plant defense. such tion and reference to a standard c u ~ e  CON~N&~~ 

with authentic dhurrin. engineering c~anOgenic glucosides 20. B:k Halkier. B. L Msller. Plant Phvsiol. 90. 1552 
acyanogenic crop plants may prove useful 
for pest control purposes. 
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