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Zipf Distribution of U.S. Firm 


Robert 1. Axtell 

Analyses of f i rm sizes have historically used data that included limited samples 
of small firms, data typically described by lognormal distributions. Using data 
on the entire population of tax-paying firms in  the United States, I show here 
that the Zipf distribution characterizes f i rm sizes: the probability a f i rm is larger 
than size s is inversely proportional t o  s. These results hold for data from 
multiple years and for various definitions of f i rm size. 

Firm sizes in industrial countries are highly 
skew, such that small numbers of large firms 
coexist alongside larger numbers of smaller 
firms. Such skewness has been robust over 
time, being insensitive to changes in political 
and regulatory environments, immune to 
waves of mergers and acquisitions ( I ) ,  and 
unaffected by surges of new firm entry and 
bankruptcies. It has even survived large-scale 
demographic transitions within work forces 
(e.g., women entering the labor market in the 
United States) and widespread technological 
change. The finn size distribution within an 
industry indicates the degree of industrial 
concentration, a quantity of particular interest 
for antitrust policy. 

Beginning with Gibrat (2 ) ,firm sizes have 
often been described by lognormal distribu- 
tions. This distribution is a consequence of 
the "law of proportional effect." also known 
as Gibrat's law, whereby finn growth is treat- 
ed as a random process and growth rates are 
independent of firm size (3). Such distribu- 
tions are skew to the right, meaning that 
much of the probability mass lies to the right 
of the modal value. Thus, the modal firm size 
is smaller than the median size, which, in 
turn, is smaller than the mean. 

The upper tail of the finn size distribution 
has often been described by the Yule ( I )  or 
Pareto (also known as power law, or scaling) 
distributions (4, 5). For a discrete Pareto- 
distributed random variable, S, the tail cumu- 
lative distribution function (CDF) is 

where is the minimum size ( 6 ) .  Recent 
analysis of data on the largest 500 U.S. finns 
gives a as -1.25, whereas it is closer to 1 for 
many other countries (7). The special case of 
a = 1 is known as the Zipf distribution and 
has somewhat unusual properties insofar as 
its moments do not exist(8): This distribution 
describes surprisingly diverse natural and so- 
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cia1 phenomena, including percolation pro- 
cesses ( 9 ) ,  immune system response (10). 
frequency of word usage (4),  clty sizes (4. 
I I) .  and aspects of Internet traffic (12) 

From an analysis uslng a sample of firms 
In Standard & Poor's COMPUSTAT, a com- 
merc~ally ava~lable data set. ~t has been re- 
ported that U S firm slzes are approx~mately 
lognormally distributed (13) The COMPU- 
STAT data cover nearly all publ~cly traded 
firms In the United States-some 10.776 
finns in 1997, almost 4300 of which had 
more than 500 employees. Firms covered by 
COMPUSTAT collectively employed oker 
52 million people, approximately one-half of 
the U.S. work force. However, these data are 
unrepresentative of the overall population of 
U.S. firms. Data from the U.S. Census Bu- 
reau put the total number of firms that had 
employees sometime during 1997 at about 
5.5 million. including over 16.000 having 
more than 500 employees. Furthermore. the 
Census data have a qualitatively different 
character than the COMPUSTAT data. Cen- 
sus data display monotonically increasing 
numbers of progressively smaller firms. a 
shape the lognormal distribution cannot re- 
produce, and suggesting that a power law 
distribution may apply. As shown in Table 1 
(14), the mean firm size in the COMPU- 
STAT data is 4605 employees (6349 for firms 
larger than 0), whereas in the Census data it is 

Table 1. U.S. f i rm size distribution in 1997, com- 
pared across data sources. Number of firms in 
various size categories, w i t h  size defined as the 
number o f  employees, comparing COMPUSTAT 
and U.S. census 6;reau data' for 1997. No te  that  
there are monotonically decreasing numbers o f  
progressively larger firms in t he  Census data, 
whereas t h i  is n i t  the case in the COMPUSTAT 
data (29). 

Size class COMPUSTAT Census 

2,576 719,978 
to 123 2,638,070 

5 t o  9 149 1,006,897 
10 t o  19 251 593,696 

20 99 1,287 487,491 
100 t o  499 2,123 79,707 
500 + 4,267 16.079 
~~~~l 10,776 5,541.918 
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Fig. 1. Histogram of U.S. firm sizes, 
by employees. Data are for 1997 

\from the U.S. Census Bureau, tab-
ulated in bins having width in- ,10-2, 
creasing in powers of three (30)., The solid line is the OLS regressionc 
line through the data, and it has a { 104. 
slope of 2.059 (SE = 0.054; adjust- D. 

Y ed R2 = 0.992), meaning that a = 

10-10 1.059; maximum likelihood and 10.5. , 
nonparametric methods yield sim- 1O4 106 108 1010 
ilar results. The data are slightly Receipts (1997 $)

10-l3 , 

1 10 l o 2  103 104 105 
concave t o  the origin in log-log 
coordinates, reflecting finite size Fig. 2. Tail cumulative distribution function of 

Firm size (employees) cutoffs at the limits of very small U.S. firm sizes, by receipts in dollars. Data are 

and very large firms. for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of 
10. The solid line is the OLS regression line 
through the data and has slope of 0.994 (SE = 

19.0 (21.8 for firms larger than 0). Clearly, Here, OLS yields an estimate of a = 1.098 0.064; adjusted RZ = 0.976). 
the COMPUSTAT data are heavily censored (SE = 0.064), and the adjusted R2 = 0.977. 
with respect to small firms. Such firms play Including self-employment drives the aver-
important roles in the economy (15, 16). age firm size down to 5.0 employeesifirm, effect on the overall firm size distribution. 

For further analysis, I used a tabulation from and makes the median number of employees There are a variety of stochastic growth 
Census in which successivebins are of increas- 0. processes that converge to Pareto and Zipf 
ing size in powers of three. The modal fm size An interesting property of firm size distri- distributions (1, 5, 17, 18).Empirically, there 
is 1, whereas the median is 3 (4 if size 0 f m s  butions noted in previous studies of large is support for Gibrat-like processes in which 
are not counted) These data are approximately firms is that the qualitative character of such average growth rates are independent of size 
Zipf-distributed (a  = 1.059),as determined by distributions is independent of how size is (19, 20) and growth rate variance declines 
ordinary least squares (OLS) regression in log- defined (I). Although the position of individ- with size (21,22). Consider a variation of the 
log coordinates (Fig. 1).There are too few very ual firms in a size distribution does depend on Gibrat process known as the Kesten process 
small and very large f m s  with respect to the the definition of size, the shape of the distri- (23-25), in which sizes are bounded from 
Zipf fit, presumably due to finite size effects, bution does not. This also holds for the Cen- below; i.e., 
yet the power law distribution well describes sus data. Basing firm size on receipts, a Zipf 
the data over nearly six decades of fm size distribution describes the data ( a  = 0.994) s,(t + 1) = max[so,y(t)s,(t)l (3) 

(from 10' to lo6 employees). This result sug- (Fig. 2). Here, modal and median firm reve- where y is a random growth rate. For nearly 
gests both that a common mechanism of firm nues are each less than $100,000, and the any growth rate distribution, this process 
growth operates on f m s  of all sizes, and that average is $173,00Olfirm. yields Pareto distributions that have the ex-
the fundamental unit of analysis is the individ- As a further test on the robustness of these ponent a defined implicitly by (26) 
ual employee. results, I repeated these analyses for Census 

But firms having a single employee are data from 1992. Average firm size was slight-
not the smallest economic entities in the U.S. ly smaller then, at 20.9 employeeslfirm (ex-
economy. Although there were some 5.5 mil- cluding size 0 firms). But overall, the Zipf (4) 
lion firms that had at least one employee at distribution is as strong (Table 2). 
some time during 1997, there were another Virtually all U.S. firms experienced sig-
15.4 million business entities in that year nificant changes in revenue and work force where N is the total number of firms and A is 
with no employees. These are predominantly from 1992 to 1997. Thus, individual firms the number of employees. For N = 5.5 X lo6 
self-employed individuals and partnerships, migrated up and down the Zipf distribution, and A = 105 X lo6, as in 1997 (excluding 
and are called "nonemployer" firms by Cen- but economic forces seem to have rendered self-employment), s, = 1 implies a .= 0.997, 
sus. These smallest of firms account for near- any systematic deviations from it short-lived. a value close to my empirical finding. Similar 
ly $600 billion in receipts in 1997. Yet, if Even the substantial merger and acquisition results are obtained for each year back 
these firms are included in the overall firm activity of this period seemed to have little through 1988 (Table 3). 
size distribution, the Zipf distribution still fits 
the data To see this' Eq. must be Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
lnodified firms having no the number of firms and total employees each increased over this period,as did the average firm size, the 
employees value of a was approximately unchanged. 

Pr[S 2 s,] = (%IR,s,2 0. a > 0 (2) year Firms Employees Mean firm size a, from (4) 

1997 5,541,918 105,299,123 19.00 0.9966 
Table 2. Power law exponent for U.S. firms in 1996 5,478,047 102,187,297 18.65 0.9986 
1992, firms with employees and all firms. Results 1995 5,369,068 100,314,946 18.68 0.9983 
using OLS regression on Census data, with stan- 1994 5,276,964 96,721,594 18.33 1.0004 
dard errors in parentheses. 1993 5,193,642 94.773.913 18.25 1.0008 

1992 5,095,356 92,825,797 18.22 1.0009 
Type Estimated u Adjusted R2 1991 5,051,025 92,307,559 18.28 1.0004 

1990 5,073,795 93,469,275 18.42 0.9995 
Firms with employees 0.994 (0.043) 0.995 1989 5,021,315 91,626,094 18.25 1.0006 
All businesses 0.995 (0.031) 0.994 1988 4,954,645 87,844,303 17.73 1.0039 
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The Zipf distribution is an unambiguous -
target that any empirically accurate theory of 
the firm must hit. This result, taken together 
with those in (21) and (27), place important 
limits on models of firm dynamics. That is, 
(i) firm growth rates follow a Laplace distri- 
bution, (ii) the standard deviation in growth 
rates falls with initial firm size according to a 
power law, and (iii) large firms pay higher 
wages for the same job according to yet 
another power law (the so-called wage-size 
effect). Because the Zipf distribution obtains 
all the way down to the smallest sizes, it 
should be possible to derive Kesten-type pro- 
cesses and, hence, the Zipf distribution from 
a microeconomic model in which individual 
agents interact to form productive teams. Al- 
though today no analytically tractable models 
of this type exist, agent-based computational 
results have achieved significant success ac- 
cording to these criteriaj28). 

The Zipf distribution may describe firm 
sizes in other countries as well, a conjecture 
that can only be tested once individual gov- 
ernments make available-and in some cases 
gather for the first time-data that purport to 
be comprehensive. 
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Many central nervous system regions at all stages of life contain neural stem 
cells (NSCs). We explored how these disparate NSC pools might emerge. A 
traceable clone of human NSCs was implanted intraventricularly to allow its 
integration into cerebral germinal zones of Old World monkey fetuses. The 
NSCs distributed into two subpopulations: One contributed to corticogenesis 
by migrating along radial glia to temporally appropriate layers of the cortical 
plate and differentiating into lamina-appropriate neurons or glia; the other 
remained undifferentiated and contributed to a secondary germinal zone (the 
subventricular zone) with occasional members interspersed throughout brain 
parenchyma. An early neurogenetic program allocates the progeny of NSCs 
either immediately for organogenesis or to undifferentiated pools for later use 
in the "postdevelopmental" brain. 

As cells with stemlike qualities have come to 
be identified within a widening range of or- 
gans [e.g., ( I ,  2)], new questions have arisen 
about their relevance to normal development. 
The central nervous system (CNS) may serve 
as a bellwether for insights in this field. NSCs 
have been identified in the mammalian CNS, 
including humans (3-9), at stages from fetus 
to adult in a surprisingly wide range of re- 
gions (10-13). NSCs, defined as self-renew- 
ing, propagatable primordial cells each with 
the capacity to give rise to differentiated 
progeny within all neural lineages in all re- 
gions of the neuraxis, are posited to exist in 
the embryonic and fetal ventricular germinal 
zone (VZ) where they participate in CNS 
organogenesis (5, 14, IS). Cells equally 
"stemlike" in their potential have been iden- 
tified at later stages (including old age) from 

a variety of regions: subventricular (SVZ) 
(13-17) and ependymal (18) zones of the 
forebrain, subgranular zone of the hippocam- 
pus (6-10, 19), retina (20) and optic nerve 
(10, 11), cerebellum (IZ), spinal cord (21). 
and even cortical parenchyma (10, IS, 22). 
How might these observations be reconciled? 
Are such stemlike pools, particularly those 
isolated from various parenchymal regions at 
"postdevelopmental" periods, of physiologi- 
cal relevance or artifacts of experimental ma- 
nipulation (10, 1I)? Do these populations 
represent the same lineage or unique pools 
(1 7)? Of what relevance are these cells to 
normal human CNS development and repair? 

We hypothesized that multiple stem cell 
pools, descendants of a common NSC. 
emerge during early cerebrogenesis as cells 
are used in organogenesis and concurrently 
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