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The temporal resolution of neuronal integration depends on the time window 
within which excitatory inputs summate to reach the threshold for spike 
generation. Here, we show that in rat hippocampal pyramidal cells this window 
is very narrow (less than 2 milliseconds). This narrowness results from the short 
delay with which disynaptic feed-forward inhibition follows monosynaptic 
excitation. Simultaneous somatic and dendritic recordings indicate that feed­
forward inhibition is much stronger in the soma than in the dendrites, resulting 
in a broader integration window in the latter compartment. Thus, the subcel­
lular partitioning of feed-forward inhibition enforces precise coincidence de­
tection in the soma, while allowing dendrites to sum incoming activity over 
broader time windows. 
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At certain brain synapses, reliable transmis­
sion is ensured through large, rapidly rising, 
excitatory postsynaptic potentials (EPSPs), 
which are able to trigger a spike with little 
latency variation (/). 

In hippocampal pyramidal cells (PCs), the 
small size of most unitary EPSPs requires 
that synaptic activity summate to reach the 
spike threshold (2). In principle, the relatively 
long membrane time constant of these neu­
rons (3) may allow EPSPs to summate over 
large time windows. The occurrence of 
spikes would then reflect the average synap­
tic bombardment over time instead of being 
selectively time-locked to coincident synaptic 
activity. Thus, it is not known whether the 
timing of a spike in PCs reports the timing of 
the afferent activity triggering the spike (4-
6). This issue can be addressed experimen­
tally by determining the time window within 
which the activity of independent synaptic 
inputs must occur to trigger a spike. 

We recorded from CA1 PCs in acute 
hippocampal slices from rat brains in cell-
attached mode to avoid interfering with the 
intracellular ionic composition. Two stim­
ulation electrodes were placed in the stra­
tum radiatum at 300 to 600 |xm on each 
side of the recorded neuron (7). Stimula­
tion intensity was set so that when the two 
Schaffer collateral pathways were stimulat­
ed simultaneously, the PC fired a spike, 
detected as a capacitive current, in about 
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50% of the trials (threshold stimulation). 
The probability of spiking steeply de­
creased when one of the stimuli was shifted 
in time in 2.5- or 5-ms steps (Fig. 1A). A 
Gaussian fit of the data gave a SD of 1.4 ms 
(n = 9 cells). 

We then blocked 7-aminobutyric acid A 
receptors (GABAAR) with bicuculline (20 
|JLM) or with the more selective antagonist 
SR95531 (3 |JLM) (8) and readjusted the stim­
ulation intensity of both pathways to match 
the spiking probability observed under con­
trol conditions with simultaneous stimulation 
(51 ± 3% in control conditions versus 50 ± 
5% in the presence of bicuculline, n = 5 
cells; 62 ± 6% in control conditions versus 
64 ± 11% in the presence of SR95531, n = 
4 cells). This increased the delay between 
stimulus and spike (8.2 ± 0.6 ms in control 
conditions, 16.8 ± 1.2 ms in the presence of 
GABAAR antagonist; n = 9 cells). 

GABAAR antagonists greatly prolonged 
the integration window (SD = 17.8 ms in 
bicuculline, n = 5 cells; SD = 15.6 ms in 
SR95531, n = 4 cells). In addition, although 
spikes triggered with simultaneous stimula­
tion under control conditions showed submil-
lisecond variability in spike delay (jitter), as 
described for intracellular current injections 
(9), in the presence of GABAAR antagonists 
the jitter increased almost threefold (the SD 
was 0.5 ms in control conditions versus 1.4 
ms with GABAAR antagonists, n = 9 cells; 
Fig. IB). 

We monitored the underlying synaptic 
events using whole-cell recordings. In volt­
age-clamped cells, a stimulus elicited an ex­
citatory postsynaptic current (EPSC)-inhibi-
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tory postsynaptic current (IPSC) sequence. 
The IPSC, which could be blocked by bicu- 
culline, had a delayed onset with respect to 
the EPSC (1.9 + 0.2 ms, n = 9 cells; Fig. 
2A). Under current-clamp conditions, a stim- 
ulus elicited an EPSP-IPSP sequence (lo), 
which was strongly reduced by bath per& 
sion of the or-amino-3-hydroxyl-5-methyl-4- 
isoxazole-propionate (AMPA)ikainate recep- 
tor antagonist NBQX [20 to 40 FM; EPSP, 
114 + 5% reduction; IPSP, 91 + 2% reduc- 
tion (11); n = 12 (six cells, 12 pathways); 
Fig. 2A], indicating that the stimulation of 
Schaffer collaterals leads to synaptic activa- 
tion of GABAergic interneurons (feed-for- 
ward inhibition). 

This was not due to the stimulation of 
large numbers of Schaffer collaterals, be- 
cause even the weakest stimulation intensi- 
ties, still producing a detectable postsynaptic 
response, evoked a delayed inhibitory com- 
ponent (2.9 + 1 nS; n = 14 cells; Fig. 2B) 
(12). In addition, brief puffs of potassium 
solution focally applied onto the CA3 PC 
layer evoked clear EPSC-IPSC sequences in 
CAI PCs (n = 5 cells; Fig. 2C) (13). 

These results are consistent with previous 
observations indicating that spikes in inter- 
neurons can be triggered by unitary EPSPs 
(14-16) and suggest that CA3 to CAI signal- 
ing occurs via a canonical EPSP-IPSP se- 
quence (Fig. 2D). 

To determine the integration window in 
current-clamp conditions, we set the stim- 
ulation intensity at the threshold for spike 
generation when two pathways were stim- 
ulated simultaneously and readjusted the 
intensity to keep spiking probability con- 
stant after the perfusion of GABA,R an- 
tagonists (58 + 5% in control conditions, 
56 + 2% in GABA,R antagonists; n = 8 
cells (five in bicuculline, three in SR9553 I) 
(1 7). This decreased the initial slope of the 
EPSP by 80 + 4% [n = 6 (three cells in 
SR9553 1, six pathways)], indicating that 
without feed-forward inhibition. a fifth of 
the excitatory fibers originally recruited are 
sufficient to reach threshold. The slower 
depolarization is likely to underlie the in- 
creased spike delay (6.9 + 0.5 ms versus 
16.1 + 0.8 ms; n = 8 cells) and jitter (0.6 
ms versus 1.8 ms; n = 8 cells; Fig. 2F) 
(18). The integration window increased 
from 1.6 ms in control conditions to 14.8 
ms with GABA,R antagonists (n = 8 cells; 
Fig. 2E). 

Different classes of GABAergic inter- 
neurons selectively innervate different sub- 
cellular compartments of PCs (19). To re- 
veal the subcellular target of feed-forward 
inhibition on CA1 PCs, we simultaneously 
recorded from the soma and apical dendrite 
(20). The Schaffer collateral-evoked EPSP 
recorded in the dendrites was larger by 
368 + 1 12% [4.2 + 0.5 mV in the dendrite 

versus 1.2 + 0.3 mV in the soma; n = 10 
(nine cells, 10 pathways; the average dis- 
tance between pipettes was 21 1 + 19 Fm, 
and the range was from 120 to 341 pm)] 
and had a steeper initial slope compared 
with the somatic response [1.5 +- 0.2 mV1 
ms versus 0.6 + 0.1 mVIms, P < 0.01; n = 
10 (nine cells, 10 pathways); Fig. 3A]. In 
bicuculline, EPSPs recorded in the dendrite 
were only 15 + 5% larger than those re- 
corded in the soma [6.2 + 0.7 mV versus 
5.5 + 0.6 mV in the soma; n = 10 (nine 
cells, 10 pathways)] and EPSP half-decay 
times did not significantly differ between 
compartments [38.6 + 6.9 ms versus 
40.9 + 6.2 ms; P > 0.28; n = 10 (nine 

cells, 10 pathways); Fig. 3, A and B]. In 
bicuculline, initial slopes remained un- 
changed, confirming the lack of direct ac- 
tivation of inhibitory fibers [0.6 + 0.1 mV1 
ms in control versus 0.7 + 0.1 mV1ms in 
bicuculline (measured in the soma); P > 
0.26; n = 10 (nine cells, 10 pathways); Fig. 
3B]. The bicuculline-sensitive area (21) 
was significantly greater in the soma by 
24 + 5% ( P  < 0.001; n = 9 cells; Fig. 3B) 
(22). In addition, the bicuculline-sensitive 
area in dendritic recordings decreased with 
increasing distance from the soma (Fig. 
3B). To test whether an exclusively somatic 
inhibition could account for the above ob- 
servation, we imposed an inhibitory con- 
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PG upon stimulation of 
two Shaffer collateral 
pathways. Each sweep 
shows a different inter- 
stimulus interval (ISI) b e  
tween pathways. (Upper 
left) In control condi- 
tions, a spike is trig- 
gered only upon simul- 
taneous stimulation of 
pathways 1 and 2. (Up- 
per right) In bicuculline, 
spikes are also triggered 
with larger ISls. (Bottom) 
Histogram showing nor- 
malized probability of 
spike generation plotted 
against lSls (n = 9 cells). 
The solid columns show 
control conditions (bin 
width, 2.5 ms for lSls b e  
tween +I5 ms and 5 
ms for longer ISls). The 
open columns show 
conditions in CABAAR 
antagonists (bin width, 5 
ms). Norm. prob., nor- 
malized probability; At, 
interstimulus interval 
(B) Same cell as in 
(A). (Upper panels) 
Current traces; four 
superimposed sweeps 
were recorded upon 
simultaneous stimu- 
lation of both path- 
ways without (left) 
and with (right) bicu- 
culline. (Bottom) His- 
tograms showing the 
probability distribu- 
tion of the time of 
spike occurrence (n = 9 
cells; bin width, 500 
PI. 
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ductance (dynamic clamp) through the so-
matic pipette 2 ms after the onset of Schaf-
fer collateral-evoked EPSPs in the presence 
of the GABA,R antagonist SR95531 (3 
pM; the average distance between pipettes 
was 200 + 14 pm, and the range was from 
143 to 255 pm; n = 9 cells; Fig. 3C) (23). 
The attenuation of the simulated IPSP-sen-
sitive area was not significantly different 
from the decrease in the bicuculline-sensi-
tive area (P > 0.26; Fig. 3D) (24). 

We compared the time window of EPSP 
summation between the soma and the den-
drites of CAI PCs (the average distance be-
tween pipettes was 229 ? 30 pm, and the 
range was from 120 to 323 pm; n = 6 cells; 
Fig. 4A). The graph illustrates that although 
the soma effectively summates EPSPs over a 
time window ranging from -1.5 to f2.4 ms, 
effective summation of EPSPs recorded in 

the dendrites occurs over a broader window 
(from -8.6 to +12.3 ms) (25). This differ-
ence was due to a preferential inhibitory input 
on the soma, first, because in bicuculline the 
window of EPSP summation was indistin-
guishable between both compartments (>60 
ms; the average distance between pipettes 
was 200 + 12 pm, and the range was from 
168 to 236 pm; n = 4 cells; Fig. 4B). Second, 
imposing a somatic inhibitory conductance in 
the presence of SR95531 mimicked the so-
matic and dendritic integration windows ob-
served under control conditions (soma, +1.8 
ms; dendrite, +12.5 ms; the average distance 
between pipettes was 184 ? 20 pm, and the 
range was from 143 to 248 pm; n = 4 cells; 
Fig. 4C) (26). 

Our data indicate that feed-forward inhi-
bition limits temporal summation of EPSPs 
far below the mean interspike interval of PCs 

Fig. 2. Feed-forward inhibition is responsible for coinci-
dence detection. (A) Whole-cell recordings from CAI PCs 
upon Schaffer collateral stimulation. (Left panel) Current 
traces recorded in control conditions and bicuculline (bicu) 
and their algebraic difference (holding potential, -73 mV). 
(Left inset) Delays between the onset of the EPSC and the 
IPSC (the solid circle represents the average; n = 9 cells). 
(Right panel) Different cell, from the one on the left. The 
voltage traces recorded in control conditions and in NBQX 
are shown. The membrane potential is -66 mV. (Right 
inset) The residual EPSP and IPSP (% of control) in NBQX 
[n = 12 (six cells, 12 pathways)]. (B) (Left) Responses to 
low-intensity stimulation of Schaffer collaterals from a 
CAI PC voltage clamped at  -68 mV. Illustrated sweeps 
were collected with the same stimulation intensity and 
were ordered according to whether the stimulus evoked an 
EPSC-IPSC sequence, the failure of either component, or 
the complete failure of transmission. (Right) IPSC conduc-
tance is plotted against EPSC slope (n = 14cells; bin width, 
5 pAlms). In all experiments, the stimulation intensity was 
slowly decreased until the complete failure of transmission 
occurred. (C) EPSC-IPSC sequences recorded in a CAI PC 
voltage clamped at -58 mV and evoked by applying brief 
potassium puffs (1M KC1 for 10 to 40 ms at 0.1 Hz) with a 
patch pipette on the CA3 cell body layer. (D) Schematic 
diagram of disynaptic feed-forward inhibition. SC, Schaffer 
collateral; IN, interneuron; PC, pyramidal cell (E) Voltage 
traces for current-clamp recordings from CAI PCs upon 
stimulation of two Schaffer collateral pathways. (Left) 
Control conditions; the dotted line is the average response 
to stimulation of one pathway. Continuous lines represent 
single responses to three different ISls. (Middle) Four su-
perimposed responses to four lSls in bicuculline. Spikes 
were truncated. (Right) Histogram showing normalized 
probability of spike generation plotted against the IS1 (n = 
8 cells). Bin width in control, 2.5 ms for lSls between 215  
ms; 5 ms for longer lSls (solid columns); bin width in 
GABA,R antagonists, 5 ms (open columns). (F) The same 
cell as in (E), showing simultaneous stimulation of both 
pathways without (left) and with (middle) bicuculline. 
(Right) Histograms (n = 8 cells; bin width, 500 ks). 
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(27), thus making them precise coincidence 
detectors (28). The presence of feed-forward 
inhibition in several major projections in the 
central nervous system (29) may thus serve as 
a means to maintain timing across brain areas 
(30). 

The recruitment of GABAergic inter-
neurons whose terminals preferentially im-
pinge on or close to the soma rather than 
the apical dendrites leads these two com-
partments to integrate EPSPs over different 
time windows. Thus, summation of EPSPs 
to reach the threshold for action potential 
generation has to occur within less than 2 
ms in CA1 PCs, whereas dendritic summa-
tion of the same EPSPs can occur over 
longer time periods. Cooperativity between 
separate inputs over long time windows 
may enable the expression of slower, volt-
age-dependent signaling [e.g., through N-

-
K+ puff 
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Fig. 3. Feed-forward inhibitory inputs selectively impinge on the 
soma of PCs. Drawing at top shows the recording configuration. (A) 
Voltage traces showing somatic (s, black) and dendritic (d, blue) 
responses t o  Schaffer collateral stimulation, in control conditions 
(left) and in bicuculline (middle). (Right) Summary graph showing 
dendritic EPSP amplitudes plotted against somatic EPSP amplitudes in 
control conditions (solid symbols) and in bicuculline (open symbols). * 
Different symbols are shown for different experiments [n = 10 (9 Control 
cells, 10 pathways); the average distance between pipettes was 
211 + 19 pn; n = 9 cells]. (B) Same cell as in (A). Voltage traces; 
somatic (left) and dendritic (middle) recordings with and without 
bicuculline and their algebraic difference. (Right) Summary graph in 
which the integral of the algebraic difference between traces record-
ed in the presence and absence of bicuculline in the dendrites is 
divided by the corresponding integral in the soma and plotted against 
the distance between the two  recording sites (n = 9 cells). (C) 
Different cell from that in (0). Voltage traces; somatic (s, black) and 
dendritic (d, blue) responses t o  Schaffer collateral stimulation in 
SR95531, without (left) and with (middle) dynamic current injection 
(lower trace) through the somatic pipette. (Right) Summary graph Soma 
showing dendritic EPSP amplitudes plotted against somatic EPSP 
amplitudes under control conditions (open symbols) and with dy-
namic current injection (solid symbols). Different symbols are shown Bicu 

for different experiments (the average distance between pipettes was 
200 t- 14 bm; n = 9 cells). (D) Same cell as in (C). Voltage traces be.. Subtr. 
showing somatic (left) and dendritic (middle) recordings in the pres-
ence and absence of dynamic current injection and their algebraic . . . .
difference. (Right) Summary graph showing the ratio between the 
dendritic and somatic integrals of the algebraic differences between c 
traces recorded in the presence and absence of dynamic current No dynamic clamp
injection plotted against the distance between the two  recording 
sites (solid symbols; n = 9 cells). Note the close match (apart from 
one experiment) with the data points obtained with the physiological 
activation of feed-forward inhibition [open symbols, taken from (B)]. 

methyl-D-aspartate (NMDA) receptors], as 
may be necessary for the induction of last-
ing changes in synaptic strength. 

Although interneurons innervating PC 
dendrites also receive excitatory inputs from 
Schaffer collaterals, providing the anatomical 
basis for dendritic feed-forward inhibition 
(31), their mode of activation remains to be 
clarified. 

Noradrenaline and acetycholine can selec-
tively regulate the excitability of subsets of 
GABAergic interneurons (32, 33) and are 
released during different behavioral states 
(34, 35). The excitability of interneurons will 
determine the delay and size of feed-forward 
inhibition and hence the size of the integra-
tion window. It is conceivable that according 
to the behavioral state of the animal, the 
operation mode of PCs shifts from precise 
coincidence detection to integration over 
large time windows. 

D 
Soma 

f--=-
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