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Sorting of Striatal and Cortical 
lnterneurons Regulated by 

Semaphorin-Neuropilin 
Interactions 

Oscar ~ar in , '  Avraham ~aron,' Anil Bagri,'  
Marc Tessier-Lavigne,' John 1. R. Rubenstein1*  

Most striatal and cortical interneurons arise from the basal telencephalon, later 
segregating t o  their respective targets. Here, we show that migrating cortical 
interneurons avoid entering the striatum because of a chemorepulsive signal 
composed at  least in  part of semaphorin 3A and semaphorin 3F. Migrating 
interneurons expressing neuropilins, receptors for semaphorins, are directed t o  
the cortex; those lacking them go t o  the striatum. Loss of neuropilin function 
increases the number of interneurons that migrate into the striatum. These 
observations reveal a mechanism by which neuropilins mediate sorting of 
distinct neuronal populations into different brain structures, and provide ev- 
idence that, in  addition t o  guiding axons, these receptors also control neuronal 
migration in  the central nervous system. 

Most striatal and cortical intemeurons derive 
from a distant region in the basal telenceph- 
alon, the medial ganglionic eminence (MGE) 
(1-3). During development. interneurons mi- 
grate tangentially along stereotypical path- 
ways to reach the striatum and the cortex. but 
the mechanisms that regulate their segrega- 
tion into these two telencephalic subdivisions 
are not known. 

To study the tangential migration of telen- 
cephalic intemeurons. we used slice cultures 
(4) and transplanted portions of the MGE from 
green fluorescent protein (GFPtexpressing 
transgenic mice (5) into host slices obtained 
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Hughes Medical lnstitute (HHMI), and Department of 
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from wild-type littermate embryos (Fig. 1) .  In 
agreement with previous reports (1-4), this 
assay consistently labeled a large number of 
migrating neurons whose transmission is medi- 
ated by y-aminobutync acid (GABA) (6). 
GFP-expressing cells followed two major 
routes in the basal telencephalon. Early migra- 
tions occurred superficial to the striatum [em- 
bryonic day 12 (E12); Fig. 1, A to Dl ( 7 )  
whereas later migrations (E13.5 and older) oc- 
curred primarily deep to the striatum (Fig. 1, E 
to H). Cells migrating toward the cortex seemed 
to avoid the striatum (Fig. 1, A to H), raising the 
possibility that cortical intemeurons might be 
instructed to avoid the striatum to promote their 
migration into cortical territories. To test this 
hypothesis, we transplanted striatal tissue into 
the cortex (Fig. 11). GFP-expressing cells mi- 
grating from the MGE avoided the ectopic stri- 
atum (Fig. 1, J and K), but migrated normally 
when a piece of piriform cortex was transplant- 
ed into the same locat~on (Fig. 1. K to M). 
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These results suggestthat an extracellularsignal 
present in the developing striatum repels cells 
migrating to the cortex. 

Class 3 s e m a p h o ~proteins are chemo-
repellents for growing axons (8, 9), allowing 
them to avoid specific regions and channeling 
them into appropriate locations in fiber tracts 
(10). The similarity of this mechanism to our 
previous observations prompted us to investi-

SemdF, or both) (11, 12) at the corticostriatal 
boundary in slice cultures and studied the mi-
gration of l ,1'-dioctadecyl-3,3,3',3'-tet~ameth-
ylindocarbocyanine perchlorate (Di1)-labeled 
cells from the MGE (Fig. 3A). As a control, 
aggregates of GFP-expressing COS cells 
were placed on the opposite side of the 
slices (Fig. 3A). Cell aggregates expressing 
both Sema3A and Sema3F blocked the mi-
gration of interneurons into the dorsal cor-
tex (Fig. 3, B to D, F, and G). In contrast, 
cell aggregates expressing exclusively 
Sema3A (which operates via neuropilinl 
receptors) or Sema3F (which operates via 
neuropilin2 receptors) (8, 9) only partially 
arrested the migration of cortical interneu-
rons (Fig. 3, E and G). Moreover, whereas 
migrating cells orient what appears to be 

their leading process toward the cortex 
when they approach the control aggregates 
(Fig. 3, H and J), most cells that approached 
the Sema3AJ3F-expressing aggregates turn 
their processes away from them (Fig. 3, I 
and J). 

We next performed loss-of-function experi-
ments, first analyzing the migration of telence-
phalic interneurons in neuropilin2 mutants (11). 
To avoid the possible redundant functions of 
neuropilinl and neuropilin2 in tangential migra-
tions at later embryonic stages, we analyzed the 
pattem of tangential migration in slices derived 
from El2 brains. At this age, neuropilin2, but 
not neuropilinl, is expressed in cells tangential-
ly migrating into the piriform cortex (Fig. 2D), 
suggesting that loss of neuropilin2 fhction at 
this stage should not be compensated by neuro-

gate the role of semaphorins in directing inter-
neuron migrations. We found that during the 
period of intemeuron migration (El2 to E16), 
semaphorins 3A and 3F (Serna3A and Sema3F) 
are expressed in the striatum but are excluded 
from regionssurrounding it (Fig. 2, A, B, E, and 
F). We next examined the expression of the 
high-affinity semaphorin receptors neuropilinl 
and neuropilin2, which are required for mediat-
ing the repulsive effect of class 3 semaphorins 
on axons(8.9). During the period of intemeuron 
migration, neuropilinl and neuropilin2 are ex-
pressed in the basal telencephalon in a pat-
tern complementary to that of Sema3A and 
Sema3F-that is, in cells located either superfi-
cial or deep to the striatum but excluded from 
striatal cells (Fig. 2, C, D, H, and I). Comparison 
of this pattern with the pathways followed by 
migrating interneurons suggested that migrating 
cells might express these receptors. To test this 
hypothesis, we examined the expression of neu-
ropilinl and neuropilin2 in GFP-expressing 
cells or in cells containing GABA or calbindin 
(4). The distribution of neuropilinl was ana-
lyzed using affinity-purified antibodies. To de-
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termine the distribution of cells expressing neu-
ropilin2, we took advantage of the expression of 
P-galactosidase from the neuropilin2 locus in 
mice with a targeted mutation for this gene (11, 
12). We found that neuropilinl and neuropilin2 
are expressed in many interneurons migrating 
into cortical tenitones (Fig. 2, G and J), but 
never in cells that invaded the striatum (6). 

To c o n h  that neuropilinl and neuropilin2 
receptors are expressed in migrating intemeu-
rons, we studied DLrl/2 double mutants. In 
these mutants, interneurons fail to differentiate 
properly and accumulate in the subventricular 
zone (SVZ) of the basal telencephalon (3, 13). 
We found that many of these cells express high 
levels of neuropilinl and neuropilin2 (6, 12). 
Ectopic neuropilin2-positive cells accumulated 
in penventricular ectopias within the SVZ. 
Some of these ectopias expressed neuropeptide 
Y (NF'Y) but did not express neuropilinl (6, 
12), suggesting that at least a large subpopula-

L Donor 

MGE 
b m b l n a  

Str r b X  

I Fig. I. Corticalinterneuronsavoid the 
striatum in their migrationto the cor-
tex. (A to H) Transplantation para-
digm to analyze the migration of 

I GFP+ cells in El2 (A) and E13.5 (E) 

tion of NPY interneurons exclusively express 
neuropilin2. 

The pattem of expression of s e m a p h o ~  
proteins and their neuropilin receptors is consis- living coronal slices (B and F) or after 

immunohistochemistryagainst CFP (C and G).Arrowheads, migratingcells; asterisks, striatum (Str); 
dotted outlines, grafts. Scale bars, 200 pm. Schematic representationsof cell migration routes are 
shown for El2 (D) and E13.5 (H). AEP, anterior entopeduncular region; MGE, medial ganglionic 
eminence; NCx, neocortex; PCx, piriforrn cortex. (I to M) Transplantation paradigm to analyze the 
migration of cortical interneurons into an ectopic striatum (eStr) (I) or piriform cortex (ePCx) (L). 
Dashed lines in (1) and (M), ectopic tissue; scale bar, 100 pm. Numbers of cells migrating into 
ectopic tissue (n = 12) are quantified in (K); histograms show averages 2 SE. x2 test, *P < 0.0001. 

tent with a model in which cortical interneurons 
express neuropilinl andlor neuropilin2 while 
migrating to the cortex and are repelled by 
striatal cells expressing Sema3A and Sema3F. 
To test this model, we placed aggregates of 
semaphorin-expressing COS cells (SerndA, 

www.sciencernag.org SCIENCE VOL 293 3 AUGUST 2001 



R E P O R T S  

pilinl signaling. For this set of experiments, we to the striatum on their way to the cortex (Fig. 4, signaling may result in an imbalance in the 
adapted an electroporation method to transfect a B and C). In contrast, in slices from neuropilin2 number of interneurons in the striatum or cortex. 
Gfi expression vector into the MGE in slice mutants, most GFP-expressing cells migrated Consistent with this, the developing striatum of 
cultures (Fig. 4A) (12). In control experiments, directly into the striatum (Fig. 4, D and E). neuropilin2 mutants contained numerous ectop- 
most GFP-expressing cells migrated superficial These results suggest that loss of neuropilin2 ic neuropilin2-expressing cells, identified by ex- 

Fig. 2. Complementary expression of class 3 
semaphorins and their receptors in the devel- 
oping telencephalon during the period of inter- 
neuron migration. (A to  F, H and I) Serial coro- 
nal sections through the telencephalon show- 
ing Sema3A (A and E) and Sema3F (B and F) 
expression in the striatum, and neuropilin7 (C 
and H) and neuropilin2 (D and I) expression in 
adjacent regions. Open and solid arrowheads in 
(D), (H), and (I) point to  superficial and deep 
migrations, respectively. (G) CFP (green) and 
neuropilinl (red) colocalization in an MCE-de- 
rived cell migrating into the cortex (solid ar- 
rowheads). Other neuropilinl+ cells are not 
labeled with CFP (open arrowheads). (J) p-ga- 
lactosidase (green puncta, arrowheads) and cal- 
bindin (red) colocalization in a cell migratin 
into the cortex. Dotted squares in (H) and (f 
show the location of the cells shown in (C) and 
(J), respectively. Scale bars, 200 pn (A to  D), 
100 pn (E, F, H, and I), 10 p,m (C and J). 
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Fig. 3. Ectopic expression of Sema3A and 
Sema3F blocks the migration of cortical inter- 
neurons. (A) Experimental paradigm. (B) Coro- 
nal slice through the telencephalon. (C and D) 
Higher magnification of the experimental (C) 
and control cortex (D). Arrowheads, Dil-labeled 
cells. Dotted lines, slice outline. (E and F) Sche- 
matic diagrams illustrating the results obtained 
in experiments where COS cells were trans- 
fected with either Sema3A or Sema3F (E) or 
both simultaneously (F). (G) Quantification of 
the effect of semaphorin-expressing cells on 
the migration of MCE-derived cells (n > 20). x2 
test, *P C 0.001, **P C 0.001, ***P C 0.0001. 
(H and I) Migrating cells penetrate through 
control COS cells (H) but are repelled by cells 
expressing semaphorins (I). Yellow and gray 
arrowheads point to  cells migrating toward or 
away from the cortex, respectively. Dotted 
lines, cell aggregate outline. (J) Quantification 
of the effect of semaphorin-expressing cells on 
the orientation of leading processes (n = 20). 
x2 test, *P < 0.0001, * *P < 0.0001. Scale bars, 
400 p m  (B), 100 pn (C, D, H, and I). 
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pression of P-galactosidase from the neuropilin2 
locus (Fig. 4, F and G) (I2), and adult mice 
lacking neuropilin2 had about twice as many 
striatal NPY-expressing interneurons as did con- 
trols (Fig. 4, H to J) (12, 14). Thus, neuropilin2 
appears to be required in vivo for sorting of 
migrating cortical and striatal interneurons to 
their correct destination. 

Neuropilinl mutant mice die by E13.5 (IS), 
precluding the analysis of interneuron migration 
in these animals. To circumvent this problem, 
we expressed a dominant-negative form of neu- 
ropilinl (Nrpldn) in migrating neurons (12,16). 
Coelectroporation of G& and Nrpldn (1 7) into 
the MGE in slice cultures resulted in a drastic 
reduction in the number of neurons migrating 
into the cortex (Fig. 4, K to 0 )  (12, 18). To 
eliminate the possibility that expression of 
Nrpldn simply prevents the normal migration of 
MGE-derived cells, we coelectroporated G& 
and Nrpldn into the MGE and cultured it in 
matrigel (BD Biosciences). Migration of GFPI 
Nrpldn-expressing cells (1 7) was indistinguish- 
able from that observed in cells electroporated 
with G& alone (12), suggesting that expression 

of Nrpldn does not nonspecifically impair cell 
migration. Thus, signaling through neuropilinl 
receptors appears also to be required for proper 
segregation of cortical and striatal interneurons. 

Our results indicate that neuropilin receptors 
are required for the sorting of striatal and corti- 
cal interneurons. MGE-derived interneurons di- 
rected toward the cortex express semaphorin 
receptors (neuropilinl, neuropilin2, or both) as 
they migrate. Striatal cells express Sema3A and 
Sema3F, which presumably contribute to creat- 
ing an exclusion zone for interneurons migrating 
to the cortex, channeling them into adjacent 
paths. In the absence of loss-of-function data for 
Sema3A and SemdF, we cannot exclude the 
possibility that additional neuropilin ligands ex- 
pressed in the striatum also contribute to this 
repulsive activity. Finally, MGE-derived inter- 
neurons migrating into the striatum either never 
express neuropilins or down-regulate their ex- 
pression before entering the striatum. We sug- 
gest that the final destination of tangentially 
migrating intemeurons (striatum or cortex) is 
determined by expression of neuropilinl and 
neuropilin2. 

Fig. 4. Loss of neuropilin function perturbs the migration of cortical interneurons. (A) Experimental 
paradigm. (B and D) Migration of cells electroporated with a Gfp expression vector (n = 818). (C and 
E) Schematic representation of migratory routes. (F and G) X-Gal staining of coronal sections through 
the telencephalon (n = 616). (H and I) NPY immunohistochemistry. (J) Quantification of the number 
of NPY+ cells in the striatum of NrpZ+/- and NrpZ-I- mice. X2 test. *P < 0.001 (n = 4). (K) Experimental 
paradigm. (1 and N) Migration of cells electroporated with a Gfp expression vector alone (L) or with Gfp 
and Nrpldn expression vectors (N). (M and 0 )  Schematic representation of migratory routes. 
Dotted lines, slice outline; PlSp, pallial-subpallial boundary; Pd, pallidum. Scale bar, 200 pm. 

Our results implicate neuropilin receptors 
and their semaphorin ligands in the control of 
neuronal migration in the central nervous sys- 
tem (CNS), a role previously proposed for other 
axon guidance systems, such as the netrin-11 
DCC and Slit/Robo (19) systems. In vitro ex- 
periments suggest that Sema3A may also pat- 
tern chick neural crest migration (20). We sug- 
gest that neuropilins and semaphorins sort and 
channel different populations of migratory neu- 
rons into distinct paths. The creation of selective 
exclusion zones for subpopulations of migrating 
neurons may represent a general role for neuro- 
pilins and semaphorins in the formation of func- 
tional boundaries between different neuronal 
populations during development of the CNS. 
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