
for four time intervals: Late Pleistocene (before 
humans arrived in the Americas), Holocene (when 
only aboriginal populations were present), pre- 
1983 (before the mass mortality of Diadema 
antillarum), and post-1983 (after the Diadema 
mortality). 
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Noisy Clockwork: Time Series Analysis of 
~opulation Fluctuations in Animals 

Ottar N. ~jernstadl* and Bryan T. Grenfe112 

Both biotic interactions and abiotic random forcing are crucial influences 
on population dynamics. This frequently leads to roughly equal impor- 
tance of deterministic and stochastic forces. The resulting tension be- 
tween noise and determinism makes ecological dynamics unique, with 
conceptual and methodological challenges distinctive from those in other 
dynamical systems. The theory for stochastic, nonlinear ecological dynam- 
ics has been developed alongside methods to test models. A range of 
dynamical components has been considered-density dependence, envi- 
ronmental and demographic stochasticity, and climatic forcing-as well as 
their often complex interactions. We discuss recent advances in under- 
standing ecological dynamics and testing theory using long-term data and 
review how dynamical forces interact to generate some central field and 
laboratory time series. 

The century of studies in population ecology 
has been dominated by a nested set of debates 
regarding the importance of various dynami- 
cal forces. The first controversy concerned 
the relative impact of biotic versus abiotic 
control of population fluctuations. The key 
question was the relative importance of 
"noise" (small-scale, high-frequency stochas- 
tic influences) versus climatic forcing (larger- 
scale, often lower-frequency signals) versus 
nonlinear interactions between individuals 
of the same or different species. The second 
question concerned the impact of intrinsic 
(i.e., intraspecific) processes, as opposed to 
extrinsic or community-level interactions, 
an argument that has been particularly heat- 
ed with reference to population cycles. A 
third debate, nested within the latter, con- 
cerns the "dimensionality" of population 
fluctuations; given that most populations 
are embedded in rich communities and af- 
fected by numerous interspecific interac-
tions, can simple (low-dimensional) models 
involving one or a few species capture the 
patterns of fluctuations? All these questions 
have been studied through a number of 
detailed analyses of specific systems in 
which theoretical models are linked with 
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long-term studies (often 10 or more gener- 
ations) through time series analysis. 

There has been much parallel and inter- 
twined development of these three dynamical 
themes, and history testifies to a succession 
of popularity of the various positions (I). 
Crudely summarized, early focus on extrinsic 
influences was replaced by the "density-de- 
pendent paradigm" (2) in the 1950s and 
1960s. This accelerated in the late 1970s, 
with May's cri de coeur (3) about the poten- 
tial of dynamical complexity even in simple 
models, leading to a focus in the 1980s on 
nonlinearity and the detection of determinis- 
tic chaos (Taken's embedology, Lyapunov 
exponents, etc.). Research has focused on 
two fronts in the past decade: (i) the impact of 
large-scale climatic forcing, coinciding with 
the rise in popularity of climate change stud- 
ies through the early 1990s, and (ii) stochas- 
tic nonlinear models that combine the nonlin- 
ear deterministic and (largely) linear stochas- 
tic theories. The goal in synthesizing these 
approaches in recent years is to understand 
how population fluctuations arise from the 
interplay of noise, forcing, and nonlinear dy- 
namics. The comparable importance of deter- 
ministic and stochastic forces makes ecolog- 
ical dynamics unique. In particular, the inter- 
action between noise and nonlinear determin- 
ism in ecological dynamics adds an extra 
level of complexity compared with the large- 
ly stochastic dynamics of, say, economic sys- 
tems or the largely deterministic dynamics of 
many physical and chemical processes. 

The dynamics of marine stocks serve as 
an illustration of the current paradigm. Most 
commercial fish stocks vary greatly in abun- 
dance and the associated time series exhibit 
complex spectra, with combinations of high- 
frequency oscillations and longer term trends 
(4, 5) (Fig. 1). High-frequency oscillations 
are thought to arise from environmental vari- 
ability particularly affecting reproduction 
[through expatriation of eggs, temperature- 
induced mortality, etc. (4)], as well as inter- 
actions between individuals (competition and 
cannibalism) or between species (fish-fish or 
plankton-fish interactions). The low-frequen- 
cy oscillations and trends are usually related 
to external forcing such as overfishing, cli- 
matic changes, and decadal, supra-, or super- 
decadal oscillations in climate. The most re- 
cent studies that combine theoretical model- 
ing with time series analysis indicate that the 
full variability in marine stocks can only be 
explained by considering the interaction be- 
tween nonlinear dynamics and stochastic 
forcing (5, 6), often in the face of strong 
human influences (7, 8)  and obscured by 
measurement error (5, 7 ) .  

The relative importance of different com- 
ponents of ecological dynamics differs some- 
what between systems-notably between ter- 
restrial versus marine, vertebrate versus in- 
vertebrate, simple versus complex life-cycle, 
etc. However, evidence is mounting that all 
components contribute and interact at partic- 
ular spatial and temporal scales in most sys- 
tems. Here we review the current understand- 
ing of the different forces that drive ecolog- 
ical dynamics. 

Simple density-dependent interactions. 
Nonlinear, density-dependent interactions can 
potentially stabilize or promote fluctuations 
in abundance because such interactions can 
either result in stable equilibria (point attrac- 
tors, namely "the carrying capacity") or cy- 
clic or chaotic attractors, associated with 
strongly overcompensatory density depen- 
dence (3). About 25 years ago, Hassell et al. 
(9) and Gurney et al. (10) took the bold step 
of insisting that the then-qualitative, strategic 
theory ought to be testable by analyses of 
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time series of abundance. The research agen- 
da was thereby focused on apportioning vari- 
ability in abundance. 

Initially, time series were used to test for 
density dependence in population growth. 
The idea is that density dependence, which 
implies a negative relation between per capita 
population growth rates and population den- 
sity, should produce a discernible signature in 
time series data. Technical exploration to test 
for this signature uncovered numerous pit- 
falls (confounding correlation with causation, 
for instance) and causes of spurious results 
(measurement error and environmental corre- 
lation are notable culprits). However, since 
the advent of robust and unbiased tests (11, 
12), evidence of density dependence in pop- 
ulation growth is often observed in long-term 
studies. Variations on this line of inquiry 
noted that age- or stage-structured popula- 
tions may exhibit density dependence that 
acts with a time lag, reflecting the develop- 
mental period. With multiple interacting stag- 
es or age classes, density-dependent feed- 
backs may also act with several lags simul- 
taneously. Therefore, the methodology has 
been extended to test for number of lags 
(called the "order of density dependence") as 
well as for regulation in multi-species sys- 
tems against the null hypothesis of purely 
stochastic variation (11, 13, 14). 

Stochastic variation. Because of the in- 
herent discreteness of individuals, popula- 
tions will fluctuate even in the absence of 
nonlinear interactions or environmental vari- 
ability. Such demographic stochasticity was 
initially investigated by the early statistical 
demographers (15, 16). According to this 
theory, stable populations should fluctuate 
around the carrying capacity according to a 
Poisson or ' negative binomial distribution. 
Variance in such fluctuations will increase 
with abundance, but the importance of demo- 
graphic stochasticity scales inversely with 
carrying capacity in the sense that the coef- 
ficient-of-variation (SD divided by the mean) 
decreases with density (15-17). An early 
analysis to test these distributional predic- 
tions studied numerous time series and used 
the fact that the slope of log variance versus 
log mean should be between one and two (but 
strictly smaller than two) for fluctuations 
arising from demographic stochasticity (18). 
This study revealed fair agreement; however, 
it and other analyses of abundance time series 
of animals in the wild have uncovered several 
instances of "extra-demographic" variability. 

The most obvious cause of extra-demo- 
graphic variation is environmental stochastic- 
ity: random fluctuations in the environment 
that induce temporal variation in per capita 
growth rates. The consequences of such en- 
vironmental fluctuations are that population 
size will be distributed according to a gamma 
or log-normal distribution around equilibrium 

(19, 20). The slope of log variance plotted Southern Oscillation (ENSO) and the North 
against log mean is exactly two for such Atlantic Oscillation (NAO)]. Linking animal 
distributions. Therefore, populations affected dynamics or demography to these climatic 
by environmental stochasticity will be more features has become something of an industry 
variable, and the coefficient-of-variation is in recent years. The link between time series 
independent of carrying capacity. The direct of abundance of planktonic copepods in the 
consequence of environmental stochasticity North Sea and the NAO, via phytoplankton 
is that demographic rates are not constant 
through time, but are distributed according to 
some distribution. 

Stochastic population fluctuations will 
represent a mixture of demographic and en- 
vironmental variability. Recent work on ap- 
portioning stochastic variability to each of 
these components uses diffusion approxima- 
tions to the birth-death process (20). Accord- 

productivity, provides a mechanistically 
well-understood example (22). We further 
discuss climatic forcing in the case studies. 

Complex dynamics. Stochasticity and den- 
sity-dependent feedbacks play a role in all 
ecological systems. However, additional is- 
sues arise whenever delayed or overcompen- 
satory density dependence drives complex 
dynamics. Significant progress has recently 

ing to this, the variance in the per capita been made in testing a range of more com- 
growth rate, r(x), is approximately (as long as plex theoretical predictions: 
abundance, x, is not too low and density 1) Dimensionality of interactions. Spe- 
dependence is not overcompensatory) given cialist enemies are predicted to induce delays 
by-var[r(x)] = u$x + u y ,  where a: is the 
demographic variance and a: is the environ- 
mental variance (20, 21). The magnitude of 
each of these components as well as the 
strength of density dependence, b, in the 
growth rate can then be estimated on the basis 
of a time series of data by considering that 
r(xt) log(xt+,lxt) - N(a - b x,, u; + u~lx,) 
(21). Here "-N(p, v)" is the shorthand no- 
tation for "is normally distributed with mean 
p and variance v." This technique was ap- 
plied to long-term data on passerine birds to 
test how the two sources of stochastic vari- 
ability scale with abundance. The study con- 
firmed that both environmental and demo- 
graphic variability are significant in a wild 
population, and that demographic stochastic- 
ity declines with population size (21). 

Environmental forcing. Large-scale cli- 
matic fluctuations are characteristically auto- 
correlated, showing a dominance of multian- 
nual or decadal variability [e.g., the El Niiio- 

in replation of the host, and thereby increase 
the dimensionality of host dynamics [see, for 
example, (14)l. From a dynamical systems 
point of view, this delay comes about because 
of the (one-way) equivalence between the 
state-space representation (i.e., the model 
considering predators and prey simultaneous- 
ly) and the delay-coordinate representation 
(i.e., the model of delayed feedbacks in only 
one of the species) (11, 14). On the ecolog- 
ical side, this is an important correspondence 
because it allows us to understand lags in the 
density-dependent feedbacks. Statistically 
this equivalence also helps us test theory 
because the order can be estimated even with- 
out knowing the details of the ecological 
interactions (23). 

The prediction of increased dimensional- 
ity of host dynamics in the presence of spe- 
cialist enemies has been tested by adding a 
parasitoid and a virus to laboratory popula- 
tions of the Indian Meal moth, Plodia inter- 
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Fig. 1. (A) The age-structured dynamics of coastal Atlantic cod populations are shaped by 
competition and cannibalism in the juvenile classes and by stochastic reproduction due to 
expatriation and starvation of eggs and larvae. (B) The abundance index from scientific census of 
young of the year ("0-group": circles and black lines, left axis) and I-year-old ("I-group": circles and 
red lines, right axis) along the Norwegian Skagerrak coast (57) exhibits erratic fluctuations. (C) The 
periodogram reveals that the dynamics are dominated by both high-frequency oscillations and 
long-term low-frequency trends (5). 
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pt~nctella (14). The predictions of lags in 
regulation and a significant increase in di- 
mensionality of the system's dynamics in the 
presence of the parasitoid were confirmed in 
the experimental time series (14). 

2) Cycles and chaos. A second theoretical 
prediction is that interactions between stages or 
age classes can result in stable, cyclic, or cha- 
otic fluctuations, depending on the strength of 
the interactions (24). Cyclic time series can 
easily be distinguished from other types of fluc- 
tuations through spectral analysis (25). Separat- 
ing chaotic fluctuations (characterized by expo- 
nential sensitivity to initial conditions) from 
simple stochastic fluctuations is much more 
difficult and is a focus of continuous method- 
ological debate and refinement (Fig. 2). How- 
ever, an important qualitative difference be- 
tween the two is that chaotic fluctuations paint 
complex geometric objects in phase-space, 
whereas simple stochastic fluctuations dd not. 
Considerations of the "spatial distance" (in 
state-space) between observed time series and 
theoretical attractors is a most promising ave- 
nue for testing hypotheses of chaotic fluctua- 
tions (26). Such considerations also promise a 
robust criterion for estimating model parame- 
ters (27). 

The transition from stable to cyclic and 
chaotic dynamics, predicted by a detailed 

2 3 4 5 6 7 8 9 1 0 

Prediction lag 

Fig. 2. Nonlinear forecasting to distinguish 
measurement error from ecological signal. The 
Ricker model (with parameters tuned to a limit 
cycle) was subjected to stochasticity in the 
growth rate, and clothed by three different 
levels of sampling error (67). Measurement er- 
ror induces variability in the data that resem- 
bles dynamic variability, a resemblance that is 
superficial because sampling variability is not 
inherent to the system, and does not have 
consequences for the underlying dynamics. The 
figure shows k-step ahead prediction profiles 
(23.68) for the model as follows: blue diamond, 
chaos; red triangle, environmental stochastic- 
ity; light blue cross, demographic stochasticity. 
The prediction profiles for the first half of Ni- 
cholson's blowfly data (70) (open circle), and 
the average profile for 14 lynx time series (38) 
(solid line) is also included for comparison (the 
error bars for the Lynx represent standard er- 
rors). Thus, measurement errors result in lower 
I-step ahead prediction, but the predictability 
does not decline with prediction interval. This is 
in stark contrast to dynamic variability (wheth- 
er stochastic or chaotic). 

consideration of the geometry of state-space, 
was recently confirmed through manipula- 
tions of between-stage cannibalism rates in 
laboratory populations of flour beetles (Pi- 
bolitinz spp.). Cannibalism rates were manip- 
ulated by physically segregating stages or by 
subsidizing or diminishing recruitment into 
each stage class (28, 29). In particular, dy- 
namics are predicted and observed to shift 
from stable to cyclic or chaotic, depending on 
the rate of cannibalism of pupae by adults. 
The laboratory experiments beautifully re- 
created the predicted bifurcation cascade 
(Fig. 3, B through D). 

3) Coexisting attractors. A third theoreti- 
cal prediction is that both stage-structured 
and trophic interactions can lead to coexisting 
attractors (30, 31). That is, depending on the 
initial conditions, different realizations of a 
process can exhibit qualitatively distinct dy- 
namics because trajectories may lock onto 
alternative dynamic regimes. For instance, 
the trophic interaction between Daphnia and 
their algal food-source is predicted to have 
two coexisting attractors (30, 31). These pre- 
dictions have also been tested in laboratory 
populations and have been confirmed through 
qualitative and quantitative consideration of 
the time series of abundance using a state- 
space perspective (Fig. 4). 

These slowly accumulating laboratory- 

based verifications of the components of eco- 
logical theory are very promising. Populations 
in the wild, of course, are subject to the whole 
spectrum of forces acting in concert. This sets 
two linked challenges for theoretical ecology. 
The first is to build models that incorporate 
low- and high-frequency stochasticity as well as 
nonlinear interactions. The second is to describe 
and understand how determinism and noise in- 
teract. Essentially, the interactions result from 
stochastic perturbations "probing" a system, re- 
vealing dynamical behavior not readily appar- 
ent in the deterministic dynamics. For example: 
(i) Deterministically stable systems often exhib- 
it phase-forgetting cycles when affected by en- 
vironmental stochasticity (25). (ii) In addition 
to attractors (Figs. 3 and 4), there is the possi- 
bility of unstable equilibria (representing sad- 
dles) (32) (Fig. 3E) and unstable invariant sets 
("repellors") (33). Small stochastic disturbances 
can push populations onto different coexisting 
attractors or close to unstable ,equilibria (or 
repellors) where the trajectories will linger (Fig. 
3F). If the unstable invariant sets are complex, 
stochastic dynamics may be entirely unrelated 
to any individual stable attractor (33). (iii) In 
age-structured populations that deterministical- 
ly exhibit a stable or cyclic athctor, dynamics 
can appear to be superimposed on long-term 
trends because stochastic reproduction is tem- 
porally "echoed" by life-cycle interactions 

e 
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Flour beetle 
Tribolium cast aneum 

Fig. 3. (A) The transition rates (gray arrows) in the stage-structured dynamics of the flour beetle 
(Tribolium castaneum) are governed by competitive and cannibalistic interactions (black arrows). 
The dynamics of the system depends on the pupal cannibalism by adults. Manipulating the 
cannibalism rates is predicted and observed to induce chaotic fluctuations and limit cycles (69). (B 
through D) The observed dynamics (lines and open circles) and predicted attractors (solid circles or 
thick black lines) for time series of adult abundance (left) and coordinates in state-space (right) for 
three different cannibalism rates (y ) and attractors. Reprinted by permission from Ecology (68), 
copyright 2001, Ecological Society of America. (B) Two cycle, y, = 0. (C) Three cycle, y, = 1. (D) 
Invariant loop, y, = 0.35. (E) The model predicts that a stable two-cycle attractor (open circle) 
coexists with an unstable equilibrium (red circle) for control populations (32). Long-term deter- 
ministic dynamics follow the stable attractor. (F) Stochastic or transient dynamics of the model 
may intermittently trace the unstable equilibrium. (G) Laboratory populations linger around the 
predicted unstable equilibrium before locking on to the stable two-point cycle as predicted by 
stochastic theory (32). 
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through a cohort-resonance effect (5). (iv) Cha- 
otic attractors make forecasting ability very re- 
stricted because of sensitivity to initial condi- 
tions (3,34) (Fig. 2). When chaotic systems are 
affected by stochasticity the "global" determin- 
istic properties becomes unimportant because 
the complex phase-space often contains saddle 
nodes, repellors, and multiple attractors. How- 
ever, locally any stochastic influences will be 
increased or shrunk depending on the exact 
geometry. Local Lyapunov exponents measure 
whether stochastic variation diverges or con- 
tracts at each specific location in phase-space 
(35). We sketch out each of these interactions in 
more details in the Web material (36). 

0.1 1.0 10.0 
Mg Daphnia 

Fig. 4. The trophic interaction between Daph- 
nia and it resource is predicted to  result in two 
coexisting attractors (a stable fix-point coexist- 
ing with a large-amplitude predator-prey cy- 
cle). The time series exhibiting the two types of 
dynamics are from replicate populations in 
identical environments (30). (A) Large-ampli- 
tude cycles. Cross, Daphnia; solid circle, chloro- 
phyll. Left axis and black lines represent Daph- 
nia abundance, Right axis and red lines repre- 
sent algal abundance. (B) Small amplitude fluc- 
tuations. (C) The two types of dynamics 
superimposed on one another as coordinates in 
phase-space. Black lines represent large-ampli- 
tude cycles (A); red lines represent small-am- 
plitude fluctuations (B). [Reprinted by permis- 
sion from Nature (30), copyright 1999, Macmil- 
Ian Magazines Ltd.] 

Confrontin Theory with Data: Time 
Series of did Populations 

A justifiable critique of laboratory-based con- 
firmation of ecological theories is the envi- 
ronmental and spatial simplicity of micro- 
cosms. Therefore, the ultimate test of theory 
needs to come from the field. Moving from 
laboratory to field studies adds extra com- 
plexities to the issues raised above. First, the 
measurement of population size in the field is 
usually done with error. Second, systems are 
usually only partially observed (not all state 
variables are tracked). Third, we frequently 
need to consider local and regional spatial 
heterogeneity; many key ecological time se- 
ries are richly disaggregated over large spa- 
tial areas. Characterizing the resultant spatio- 
temporal patterns is, perhaps, the major chal- 
lenge for ecological time series analysis and 
for mechanistic modeling. This topic is, how- 
ever, outside the scope of the current review. 

Many of our case studies are from cyclic 
populations, reflecting the major historical 
fascination of time series analysts in under- 
standing the recurrent booms and busts of 
these systems. Population oscillations also 
give a particularly strong "signal" against 
which to investigate the balance of stochastic 
and deterministic forces. We focus on what a 
number of case studies have to say about the 
general theory outlined above, and, in partic- 
ular, their bearing on: (i) environmental forc- 
ing and large-scale biogeographical varia- 
tions; (ii) the ecological dimension of popu- 
lation interactions (Can dynamics in free 
ranging populations be low dimensional?), 
(iii) the interaction between nonlinearity and 
stochasticity in the wild, and (iv) the problem 
of partial observation and measurement error. 

m e  snowshoe hare and the lynx: Cyclicity 
and dimensionality. By far the most analyzed 
time series in ecology are those of the snowshoe 
hare (Lepus amencanus) and the Canadian lynx 
(Lynx canadensis) (11, 37, 38). These studies 
provide a tidy illustration of the practice of time 
series analysis in population dynamics. Initially, 
time series were used to test for the existence of 
population cycles (37); however, both the ques- 
tions and methods applied to the time series 
have since advanced considerably. Considering 
first the relative impact of environmental driv- 
ers versus density-dependent structure, autore- 
gression that corrects for auotcorrelation in the 
observations shows that there is no direct causal 
relation between sunspot cycles and cycles in 
abundance (11). On the question of dimension- 
ality: given that the hare is embedded in a rich 
community of plants, competitors, and preda- 
tors, is it still possible to understand the dynam- 
ics in terms of a small number of key interac- 
tions? Order estimation testifies that the dynam- 
ics of the hare are three-dimensional (as would 
be expected from a tri-trophic interaction), 
whereas those of the lynx are approximately 
two-dimensional (as expected for a predator- 

prey system) (38). The current consensus, 
gleaned from detailed field studies and field 
experiments (39) and supported through theo- 
retical and statistical modeling of time series, is 
that the hare cycle can be represented as a 
tri-trophic interaction whose cycles are sus- 
tained through nonlinear interactions between 
the predator and prey. But the last word has still 
not been said-the influences of seasonality 
and space are crucial areas of ongoing research 
(40, 41). 

Rodent cycles: Roles of nonlinearity, sto- 
chastictity, and biogeographic variation. In 
comparison to the long-term data on the lynx 
and hare, few ecological time series have been 
analyzed as extensively as those revealing vole 
and lemming cycles. Because of the numerous 
competing hypotheses (42), this provides an 
interesting illustration of how time series anal- 
yses have been used in the face of a hierarchy of 
uncertainties about mechanism: it is still unclear 
whether the lemmings' chief dynamic role is as 
a "predator" on the vegetation or as a prey of 
weasels (43), and information on variables 
(predators or food biomass time series) is des- 
perately lacking. This research also illustrates 
the continuing fascination with the search for 
chaos in ecological systems (44). 

About half the hypotheses involve trophic 
interactions. Therefore, an early use of time 
series analysis tested for delayed density de- 
pendence (and "second order" dynamics) as a 
general probe for the consistency of trophic 
hypotheses. This has been done using a vari- 
ety of linear and nonlinear time series tools 
(45,46). In a similar spirit, the biogeographic 
transition in community structure (generalist 
predators are more abundant in the south) 
thought to give .rise to the transition from 
multiannual cycles to seasonal cycles in 
Scandinavian rodents was converted to the 
hypothesis that the coefficient of direct, but 
not delayed, density dependence should vary 
clinally in space. A meta-analysis of the time 
series across the gradient in dynamics sup- 
ported this prediction (47). 

These studies provided important informa- 
tion about general strategic models. In recent 
years, however, there has been a shift toward 
including more explicit and detailed mecha- 
nism. This has been very successfUlly pio- 
neered for noncyclic rodents for which density- 
dependent age-structured dynamics interacting 
with climatic forcing appears to be the key issue 
(48, 49) (we discuss this class of models in 
more detail in the next section). Mechanistic 
modeling has also been attempted for cyclic 
rodents, but a significant difficulty here is the 
absence of time series data on plants and pred- 
ators. Two different routes have been taken to 
deal with this problem of "partial observation." 
One is to rewrite the model in delay coordinates 
of the observed variable (46). The other is to 
reconstruct the.unobserved variables as part of 
the estimation, considering these as a sequence 
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of unknown parameter to be estimated (50). 
Both of these avenues pose many conceptual 
and technical challenges for future work. De- 
spite this, all the recent time series analyses add 
to the evidence that predation is an important 
component of the vole cycle. There are still 
controversies about whether a key feature of the 
cycle-the regular period but variable ampli- 
tude [also seen in many other cyclic populations 
(41)l-is best understood in terms of highly 
nonlinear interactions with modest influence of 
environmental stochasticity or weakly nonlin- 
ear interactions with strong stochastic forcing 
(50. 51). 

Island laboratories: The dvnamics of Soaj 
sheep. Island populations, where the mainland 
food web and spatial dispersal of populations 
are reduced, may be seen as an intermediate 
environment between the laboratory and the 
wild. Island populations have provided the ba- 
sis of extensive long-term studies in vertebrate 
population dynamics (52-54). The most de- 
tailed time series studies have concerned the 
feral Soay sheep of the St. Kilda archipelago. A 
time series for the main island Hirta has been 
logged since the 1950s (augmented by detailed 
individual-based demographic studies since 
1985) and reveals recurrent population crashes 
in which up to half the population can die 
during the winter. Because the sheep are free of 
predators, the cause of these fluctuations lie in 
density-dependent interactions with food avail- 
ability, modified by weather and, to some ex- 
tent, parasitism. 

The time series of this system reflects the 
technical and conceptual transition seen in pop- 
ulation dynamics in general. Correlational stud- 
ies (using key factor analysis) emphasized the 
importance of overcompensatory density de- 
pendence arising from food limitation at hlgh 
density (53). Deterministic models confirmed 
that these strong nonlinearities could potentially 
dnve recurrent deep population crashes (50). 
Attention then turned to explaining irregulari- 
ties in the pattem of crashes using the semi- 
mechanistic threshold autoregressive model to 
quantify the balance between density depen- 
dence, environmental forcing, and other sources 
of process noise (54). The significant correla- 
tion between isolated sheep populations in ad- 
jacent islands in the archipelago was used to 
highlight the great impact of environmental 
forcing on the dynamics (54). Recently, a more 
fully mechanistic age- and sex-structured model 
has been developed (55) that reveals that the 
observed dvnamics arise from an interaction 
between density dependence, weather (includ- 
ing climatic oscillations), and the age structure 
of the population. Harsh winters lull young and 
old individuals, but only in high-density years. 
This synthetic model derives from new statisti- 
cal mark-recapture methods applied to the in- 
dividual-level data. Thus. understanding the 
overall dynamics depends on detailed knowl- 
edge of demography at the individual level and 

how that, in turn, is affected by environmental 
fluctuations [see also (48, 49, 56)]. 

Coastal cod: Age stmcture, stochastic re- 
prod~lction, and measurement ewor. Quantify-
ing the magnitude of stochastic influences re- 
quires models that account for measurement 
error in the time series. To estimate the variance 
in reproductive rates and strength of within- and 
between-cohort interactions in Atlantic cod 
(Fig. 1). a hierarchical time series model was fit 
to 75-year-long time series of Atlantic cod (5). 
The dynamics was assumed to follow a stochas- 
tic age-structured model with interactions 
among the cohorts. Superimposed on that, the 
observational process was assumed to follow a 
Poisson counting-process. The analysis verified 
significant within- and between-cohort density- 
dependent mortality as well as stochastic vari- 
ation in reproduction (5). The stochastic fluctu- 
ations in reproduction were further shown to be 
"echoed" temporally by the age-structured in- 
teraction (57). Thus, the coastal cod provides a 
particularly clear example of the inability of 
purely stochastic or purely deterministic models 
to capturing the qualitative dynamics. 

Conclusions 
Like many "new syntheses." the proposal that 
"everything (nonlinearity, noise, etc.) is impor- 
tant" is not new (I). However, the recent blend 
of modem statistical approaches with mecha- 
nistic biological ingredients is shedding new 
light on the subject; ironically, adding technical 
and methodological complexities greatly clari- 
fies our biological understanding. Another area 
of population biology where the dialogue be- 
tween theory and time series data has been 
almost exactly replicated is the population dy- 
namics of infectious diseases (16, 58). An in- 
teresting contrast between childhood disease 
time series and the systems reviewed here is 
that demographic stochasticity has been much 
more studied "in the wild" in the former and has 
been shown to be of palpable importance. 
Whether this is an intrinsic difference, or 
whether the animal systems have not been stud- 
ied at the right scale to detect demographic 
stochasticity in the troughs between peaks or 
outbreaks, is not clear. We suspect, as indicated 
by recent theoretical studies (59, 60), that the 
latter is true. If so, it will be important to 
develop non-Gaussian models that encompass 
demographic stochasticity and discreteness of 
individuals and to perform field studies at finer 
spatial resolution. 

During our survey, we have come across 
several other areas where technical develop- 
ments are needed. First, we need to add statis- 
tical models for measurement error to the cur- 
rent crop of nonlinear time series models. Initial 
progress in this direction has been promising (5, 
61, 62), but more general protocols need to be 
developed. In this and many other areas, 
Markov chain Monte Carlo and related ap- 
proaches appear to provide a powerful method- 

ology (5,21. 61, 62). Second, more mechanistic 
models are required for the impact of environ- 
mental forcing. Such developments appear to 
depend on having individual-level data on re- 
sponses to environmental conditions (48, 49. 
55). Third, seasonality is too frequently ~ g -  
nored: this goes hand-in-hand with a desperate 
need for methods to fit ecologically realistic 
continuous-time models (that include stochas- 
ticity a!id climatic forcing) to time series. Initial 
progress in this area is also very promising (63). 
but this scientific area is still open. Fourth. 
although methods have been developed to esti- 
mate the dimension of ecological interactions. 
they have mostly been applied to laboratoy 
time series. Estimating effective dimension in 
the field is a much tougher task. Fifth, contin- 
ued developments of techniques to "recon-
struct" unobsened variables, coupled to semi- 
mechanistic approaches, and better methods for 
model comparison (64, 65) will always be im- 
portant, because we will never be able to mea- 
sure all variables affecting free-ranging popula- 
tions. Lastly, probably the biggest challenge- 
and opportunity-lies in understanding spatio- 
temporal dynamics. Apart from the intrinsic 
problems of developing methods and amassing 
suitable data, adding the spatial dimension sub- 
sumes the above problems. Two issues, in par- 
ticular, are (i) to estimate the extent and patter11 
of spatial coupling between dynamical units 
and (ii) to quantify how spatial pattem feeds 
back on temporal dynamics. 

For population ecology, the wedding of 
long-term studies with theory forces scien- 
tists to juggle two apparently incompatible 
aims: To understand any system, we need to 
appreciate its idiosyncrasies; to encompass 
broad patterns, we need to extract generali- 
ties. The current challenge to time serics anal- 
ysis and ecological theory is. thus, to simul- 
taneously accommodate and transcend the 
details of natural history. However. theoreti- 
cal developments can only build on continu- 
ing and new collection of high-quality and 
long-term data, ideally involving field exper- 
imentation (39, 66). 
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Complex Species Interactions and the 

Dynamics of Ecological Systems: 


Long-Term Experiments 

James H. Brown,'* Thomas C. hith ham,^ S. K. Morgan E r n e ~ t , ~  Catherine A. Cehring2 

Studies that combine experimental manipulations wi th long-term data 
collection reveal elaborate interactions among species that affect the 
structure and dynamics of ecosystems. Research programs in  U.S. desert 
shrubland and pinyon-juniper woodland have shown that (i) complex 
dynamics of species populations reflect interactions wi th other organisms 
and fluctuating climate; (ii) genotype x environment interactions affect 
responses of species t o  environmental change; (iii) herbivore-resistance 
traits of dominant plant species and impacts of "keystone" animal species 
cascade through the system t o  affect many organisms and ecosystem 
processes; and (iv) some environmental perturbations can cause wholesale 
reorganization of ecosystems because they exceed the ecological toler- 
ances of dominant or keystone species, whereas other changes may be 
buffered because of the compensatory dynamics of complementary 
species. 

Throughout the 20th century, most theoretical 
and empirical research attempted to understand 
the structure and dynamics of populations, 
communities, and ecosystems by identifying 
the components and studying their relations in 
isolation from the complicating influences of 
larger systems. This research strategy was suc- 

cessful in elucidating fundamental ecological 
processes: responses to stresses of extreme abi- 
otic conditions; limiting resources of food, wa- 
ter, and inorganic nutrients; and the biotic in- 
teractions of competition, mutualism, preda- 
tion, parasitism, and disease. It was less suc- 
cessful in revealing the complex patterns of 

temporal and spatial variation in the abundance, 
distribution, and diversity of species or the 
complicated roles of species in ecosystems. By 
the 1980s, it was becoming apparent that more 
holistic, synthetic approaches were needed (1-
4). To understand realistically complex ecolog- 
ical systems, it is necessary to study how the 
components affect and are affected by the larg- 
er, more complicated systems in which they are 
embedded. 

Especially valuable insights have come 
from decades-long studies that combine ex- 
perimental manipulations of selected species 
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