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NPASZ: An Analog of Clock 

Operative in the 


Mammalian Forebrain 

Martin ~eick,' Joseph A. ~arcia? Carol Dudley,' 

Steven L. ~ c ~ n i g h t l *  

Neuronal PAS domain protein 2 (NPASZ) is a transcription factor expressed pri- 
marily in the mammalian forebrain. NPASZ is highly related in primary amino acid 
sequence to Clock, a transcription factor expressed in the suprachiasmatic nucleus 
that heterodimerizes with BMALI and regulates circadian rhythm. To investigate 
the biological role of NPASZ, we prepared a neuroblastoma cell line capable of 
conditional induction of the NPAS2:BMALl heterodimer and identified putative 
target genes by representational difference analysis, DNA microarrays, and North- 
ern blotting. Coinduction of NPASZ and BMALI activated transcription of the 
endogenous Per7, PerZ, and Cry7 genes, which encode negatively activating com- 
ponents of the circadian regulatory apparatus, and repressed transcription of the 
endogenous BMAL7 gene. Analysis of the frontal cortex of wild-type mice kept in 
a 24-hour light-dark cycle revealed that Per7, PerZ, and Cry7 mRNA levels were 
elevated during darkness and reduced during light, whereas BMAL7 mRNA displayed 
the opposite pattern. In situ hybridization assays of mice kept in constant darkness 
revealed that PerZ mRNA abundance did not oscillate as a function of the circadian 
cycle in NPASZ-deficient mice. Thus, NPAS2 likely functions as part of a molecular 
clock operative in the mammalian forebrain. 

Locomotor activity, body temperature, endo- mals and Doubletime in flies (12-14). In the 
crine hormones, and metabolic rate fluctuate absence of entraining influences, this regula- 
cyclically with a period of 24 hours. The tory apparatus oscillates rhythmically at or 
regulatory apparatus that controls circadian near the 24-hour light-dark cycle (i.e., 12 
rhythm consists of a transcriptional feedback hours light, 12 hours dark). Entrainment de- 
cycle that is evolutionarily conserved in a rived from light, food, temperature, and met- 
wide variety of metazoans (I). In mammals, abolic activity can advance or delay the cen- 
the activating arm of this cycle is executed by tral regulatory apparatus such that it is prop- 
a heterodimeric transcription factor com- erly adapted to the summation of these exter- 
posed of the Clock and BMALI gene products nal zeitgebers. 
(2). The C1ock:BMALl heterodimer binds The master pacemaker of circadian 
directly to regulatory sequences of the genes rhythm resides in the suprachiasmatic nucle- 
comprising the negative arm of the transcrip- us (SCN), a small group of neurons located at 
tional feedback cycle. The negative compo- the base of the optic chiasma within the 
nents of the regulatory apparatus include central nervous system (15). Classical trans- 
three period (Per) genes and two crypto- plantation experiments have demonstrated 
chrome (Cry) genes (3-ll), whose products that the SCN is necessary and sufficient to 
function in a poorly understood manner to specify circadian rhythm (16, 17). Surprising- 
inactivate the C1ock:BMALl heterodimer. ly, the same molecular clock is operative in 
The duration of Per and Cry activity may be sites peripheral to the SCN (11, 18), includ- 
modified by a serine-threonine kinase vari- ing cultured mammalian cells of non-neural 
ously termed casein kinase IE or Tau in mam- origin (19). 

Neuronal PAS domain protein 2 (NPAS2, 
also termed MOP4) is a member of the basic 

'Department of Biochemistry, 2Department of Inter- helix-loop-helix (bHLH)-PAS domain fami-
nal Medicine, University of Texas Southwestern Med- 
ical Center, 5323 Harry Hines Boulevard, Dallas, TX 1~ of transcription factors. The gene encoding 
75390, USA. NPAS2 is expressed in a stereotypic pattern 
qo correspon~enceshould be addressed, E- of brain nuclei located within the mammalian 
mail: smckni@biochern.swrned.edu forebrain (20, 21). Upon positional cloning of 
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Fig. 1. Conditional ex- A B gene driven by  a promoter containing three 
pression of NPASZ and pVgRXR V 04 ORF - + 
BMALI in neuroblasto- 
ma cells. (A) SHEP neu- 
roblastoma cells were 
cotransfeded 1301 with 

' NPAS2 
R X R  ORF 

ecdysone-induiibie ex- e'  1)1 BMALI 
pression vectors (PIND) ~IND-NPAS~ NPASZORF + 
encoding open read- 
ing frames for NPASZ -- aNPAS2 
and BMALI, along with p'NDBMAL1 4 w n u l o ~ ~  '+  - 
an expression vector e z  - QBMALI 
(VgRXR) encoding the NRE-luc wcef + 
human retinoid X re- 
ceotor (RXRI and a 
mbdified'~r&o~hila melanogaster ecdysone (VgEcR) receptor (25). Stable integration of NPASZ, 
BMALI, and VgRXR expression vectors was achieved by selecting cells for neomycin, hygromycin, and 
zeocin resistance, respectively, during two cycles of transfection and selection. A luciferase reporter gene 
driven by three NPAS2:BMALI response elements and a minimal adenovirus EIB promoter (20) was 
cotransfected and selected in the second cycle of DNA transfer. (B) Upper panel: Transfected neuro- 
blastoma cells were exposed to ponasterone for 4 hours; mRNA was prepared from vehicle- and 
ponasterone-treated cells and assayed on Northern blots using probes derived from the NPAS2 and 
BMAL7 genes (31). Both NPAS2 and BMALI mRNA levels were substantially increased by ponasterone 
treatment. (e) designates the position of a BMALI-positive hybridization signal observed in vehicle- 
treated cells that may correspond to endogenous BMAL7 mRNA. Lower panel: Protein lysates were 
prepared from vehicle- and ponasterone-treated cells and assayed on Western blots using antibodies 
specific to NPAS2 and BMALI (32). Both NPAS2 and BMALI protein levels were substantially increased 
by ponasterone treatment. (e) designates the position of a BMALI-reactive protein observed in 
vehicle-treated cells that may correspond to endogenous BMALI. 

the mouse Clock gene, Takahashi and col- 
leagues noted that the Clock and NPAS2 
polypeptides are unusually similar in primary 
amino acid sequence (22), raising the possi- 
bil ity that NPAS2 might function as a molec- 

BMALI 

BMALl 

Fig. 2. Effect of conditional NPAS2:BMALl in- 
duction on Perl, Per2, Cry7, and BMAL7 mRNA 
levels. (A) Neuroblastoma cells programmed to  
conditionally express NPAS2 and BMALI were 
exposed to  ponasterone for 4, 8, 12, and 16 
hours; mRNA was prepared from cells at each 
time point, as well as a vehicle-alone control 
(O), and these were used in Northern blot as- 
says to  monitor mRNA levels for Per7, Per2, 
Cryl, BMALI, and a control mRNA correspond- 
ing to  a subunit of the 265 proteosome (37). (B) 
Protein lysates were prepared from cells at the 
same post-indudion time points and used in 
Western blot assays to  monitor protein levels 
for exogenously expressed NPAS2 and BMALI, 
as well as endogenously expressed Cryl (32). 

ular clock in the mammalian forebrain. 
To  investigate this possibility, we stud- 

ied cultured neuroblastoma cells pro- 
grammed to conditionally express human 
NPAS2 along w i th  human B M A L I ,  its ob- 
ligate heterodimeric partner (2, 23). We 
cloned NPAS2 and B M A L I  cDNAs down- 
stream o f  an ecdysone-responsive promoter 
(Fig. 1A) and stably transfected the con- 
structs into the human neuroblastoma cell 
l ine SHEP (24) together w i th  an expression 
vector encoding an ecdysone-responsive 
nuclear hormone receptor (25). The cells 
were also transfected with a luciferase reporter 

copies o f  the optimal NPAS2:BMALl ;cogni- 
tion site (20, 23). Exposure o f  the cells to 
ponasterone, a synthetic mimic o f  ecdysone, 
produced a substantial increase in W A S 2  and 
BMALl at both the mRNA and protein levels 
(Fig. 1B). In addition, luciferase enzyme activ- 
ity was conditionally elevated in response to 
ponasterone, consistent with the interpretation 
that the induced NPAS2 and BMALl polypep- 
tides function as an active, heterodimeric tran- 
scription factor (26). 

To  identify potential target genes o f  the 
NPAS2:BMALl  transcription factor, we 
used m R N A  prepared before and after ex- 
posure to ponasterone as reagents for rep- 
resentational difference analysis (RDA) 
and D N A  microarrays (27). About 90 genes 
appeared to be activated and about 50 genes 
repressed in response to ponasterone- 
induced exvression o f  NPAS2:BMALl. 
Among these were several genes encoding 
known components o f  the circadian regula- 
tory apparatus. The levels o f  endogenous 
Per l ,  Per2, and C r y l  m R N A  levels were 
elevated, whereas B M A L l  mRNA appeared 
to be diminished upon conditional activa- 
t ion o f  NPAS2:BMALl .  [The endogenous 
and exogenous B M A L l  transcripts could be 
distinguished because the oligonucleotide 
programmed onto the D N A  microarray was 
fortuitously derived from the 3' untrans- 
lated region (3' UTR) o f  the human B M A L l  
gene, which was not present in the trans- 
fected B M A L I  gene.] 

Northern blot analysis (Fig. 2A) con- 
firmed the microarray and R D A  data. 
Treatment o f  the SHEP cells wi th  vonaster- 
one produced a rapid increase in the abun- 
dance o f  Per l ,  Per2, and C r y l  mRNAs. 

BMALl - - - - - - 6 20 60 200 - 6 20 60 200 20 20 20 20 20 - 3 1 0 3 0  

cry1 - - - - -  - - - - -  - - - - -  - 6 2 0 6 0 2 0 0  - - - -  
Fig. 3. Transient transfection assays monitoring the effects of NPAS2, BMALI, and Cryl on NRE-luc 
and BMALI-luc reporters. (A) HEK293 cells were transfected with an invariant 20-ng dose of the 
NRE-luc reporter plasmid (20) along with varying amounts of the NPASZ, BMAL7, and Cryl 
expression vectors, as indicated. Cells were harvested 20 hours after transfection and assayed for 
luciferase enzyme activity (30). (B) HEK293 cells were transfected with an invariant 10-ng dose of 
the BMALI-luc reporter plasmid (28) along with varying amounts of the NPAS2 and BMAL7 
expression vectors, as indicated, and assayed for luciferase enzyme activity as in (A). Graphs shown 
are representative of at least three independent experiments. 
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The levels of Per 1, Per2, and Cryl mRNA 
remained high 8 hours after induction, but 
appeared to fall at the 12- and 16-hour time 
points. Unlike the rise in Perl ,  Per2, and 
Cryl mRNA accumulation observed in re- 
sponse to induction of NPASZ:BMALl, ex- 
pression of the endogenous BMALl gene 
diminished in a time-dependent manner. 
The reduction in BMALl mRNA levels was 
first observed 8 hours after ponasterone 
treatment, with further diminution apparent 
at the 12- and 16-hour time points. 

We used Western blotting assays to 
monitor the effects of ponasterone treat- 
ment on expression of exogenous NPAS2 
and BMALl proteins and of endogenous 
Cryl protein (Fig. 2B). Interestingly, al- 
though NPAS2:BMALl rapidly induced 
Cryl mRNA levels, the increase in Cryl 
protein levels was delayed by 4 to 8 hours. 
It was not until 12 hours after induction that 
elevated levels of Cryl protein were ob- 
served. Notably, this 12-hour time point 
coincided with the decline in NPAS2: 
BMAL 1-induced Perl,  Per2, and Cry1 

GAPDH 

dark dark 

gene expression. As discussed below, Cryl 
is a potent inhibitor of the NPAS2:BMALl 
transcription factor. As such, it is possible 
that elevated levels of endogenously 
produced Cryl are capable of antagonizing 
the ponasterone-induced NPAS2:BMALl 
heterodimer. 

We next evaluated whether Cryl might 
antagonize transcriptional activation by 
NPAS2:BMALl. Human embryonic kid- 
ney (HEK) 293 cells were transiently trans- 
fected with a luciferase reporter plasmid 
driven by a promoter containing three op- 
timal NPAS2:BMALl recognition sites 
(NRE-luc). Cotransfection of the NRE-luc 
promoter with expression vectors encoding 
either NPAS2 or BMALl alone did not 
increase luciferase enzyme activity. By 
contrast, substantive increases in luciferase 
activity were observed when both expres- 

SENSE CONTROL 

llgM dark 

abneml IC. 

OF STRUCTURES 

Fig. 4. Rhythmic fluctuations of Perl, Per2, 
Cry?, and BMAL7 mRNA levels in the mouse 
forebrain. C57B6 mice were exposed to  a 24- 
hour light-dark cycle (A) or kept in constant 
darkness (B) but otherwise housed under stan- 
dard conditions. Four animals were killed at 
each 4-hour time point over a continuous 24- 
hour period. NPASZ-enriched forebrain tissue 
was dissected and used for preparation of 
poly(A)+ mRNA (33). Northern blots were 
probed with radioactive cDNAs derived from 
the murine Perl, Per2, Cryl, BMALI, and 
GAPDH genes (37). 

sion vectors were cotransfected with the 
NRE-luc reporter (Fig. 3A). Inclusion of 
the Cryl expression vector, however, led to 
a potent, dose-dependent reduction ' i n  
NPAS2:BMAL 1-induced expression from 
the NRE-luc reporter (Fig. 3A, right). Sim- 
ilar results have been obtained with lucif- 
erase reporter constructs driven by a Perl 
promoter (5). Cryl had no effect on control 
promoters from genes not involved in cir- 
cadian rhythm (26); thus, Cryl may be a 
specific inhibitor of the NPAS2:BMALl 
heterodimer. 

To investigate the effect of NPAS2: 
BMALl on the BMALl promoter, we tran- 
siently transfected HEK293 cells with a 
BMAL 1 -1uc reporter construct (28) along 
with graded increases of the NPAS2 and 
BMAL 1 expression vectors. BMAL1-luc- 
driven luciferase activity diminished in a 

WT PEAK 

NULL TROUGH NULL PEAK 

Fig. 5. In situ hybridization assays (27) of Per2 gene expression in wild-type and NPASZ-deficient 
mice. Wild-type and NPASZ-deficient (null) mice (C57B6 strain) were housed individually in cages 
e a u i ~ ~ e d  with running wheels. Locomotor activitv was monitored bv recording each revolution of 
th'e wheel by comput~r. After 3 weeks of entrainment in a ~ 4 - h o u r i i ~ h t - d a r k ~ ~ c l e ,  animals were 
placed in conditions of constant darkness for 48 days. Mice were killed 8 hours before (trough) and 
4 hours after (peak) the onset of wheel running. Brain tissue was fixed, sectioned, and subjected 
to  in situ hybridization using sense (top left) and antisense (right four panels) probes derived from 
the murine Perl gene (31). Inset of upper left panel shows pattern of NPAS2 gene expression 
deduced by P-galactosidase staining of material derived from an NPAS2:lacZ knock-in mouse (20). 
Coronal sections and schematic correspond to  plate 44 of (34). Abbreviations: CP, caudate 
putamen; DC, dentate gyrus; HF, hippocampal formation; LA, lateral amygdala; PC, piriform cortex; 
RC, rhinal cortex; 52, secondary somatosensory cortex; T, thalamus. CAI, CAZ, and CA3 refer to  
fields of the hippocampus. Relative to  wild-type mice, peak levels of Per2 hybridization signal are 
diminished in NPAS2-expressing regions of the brain section prepared from NPAS2-deficient mice 
(piriform cortex, somatosensory cortex, caudate putamen, dentate gyrus, etc.), but not in brain 
regions that do not express NPAS2 (CAI, CAZ, and CA3 components of the hippocampus). 
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dose-dependent manner upon exposure to 
NPAS2 and BMALl (Fig. 3B), precisely 
the opposite response relative to the effects 
of the heterodimer on the NRE-luc reporter. 
As was the case for transcriptional induc- 
tion of NRE-luc, diminished BMAL 1 -1uc 
expression was dependent on both NPAS2 
and BMALl expression vectors (26). 

To address the physiological relevance 
of these cell culture observations, we ex- 
amined Per l ,  Per2, Cryl, and BMALl 
mRNA levels as a function of the light-dark 
cycle in wild-type mice. Forebrain tissue 
samples were dissected from adult mice 
at 4-hour intervals, and polyadenylated 
[poly(A)+] mRNA was evaluated by 
Northern blotting. Per l ,  Per2, and Cryl 
mRNA levels were elevated in the dark 
period and diminished in the light period, 
whereas BMALl mRNA levels began to 
diminish at the light-dark transition and 
were at their lowest level at the 12-
and 16-hour time points, when Per l ,  Per2, 
and Cryl levels peaked (Fig. 4A). Northern 
blots with poly(A)+ mRNA derived from 
mice kept in constant darkness for 72 hours 
yielded almost identical results, indicating 
that rhythmic fluctuation of NPAS2: 
BMAL1-controlled genes persists under 
conditions of constant darkness (Fig. 4B). 

In situ hybridization assays were used to 
extend these observations in two ways. Un- 
der conditions of constant darkness, wild- 
type animals were compared with NPAS2- 
deficient mice using an in situ hybridiza- 
tion probe specific for the mouse Per2 
gene. Circadian locomotor activity was 
monitored under conditions of constant 
darkness; mice were killed at time points 8 
hours before the onset of wheel running 
(trough of Per l ,  Per2, and Cryl gene ex- 
pression as assayed by Northern blotting) 
and 4 hours into wheel running (peak of 
Per l ,  Per2, and Cry1 gene expression). 
The Per2 hybridization oscillated in wild- 
type animals in numerous brain regions, 
including sites enriched in NPAS2 (so-
matosensory cortex, piriform cortex, cau- 
date putamen, and dentate gyms) as well as 
brain regions that do not express NPAS2 
(CAI, CA2, and CA3 fields of the hip- 
pocampus). By comparison, the Per2 hy- 
bridization signal did not oscillate in the 
somatosensory cortex, piriform cortex, cau- 
date putamen, and dentate gyms of NPAS2- 
deficient mice (Fig. 5). It is notable that the 
in situ hybridization signal oscillated in the 
CAI, CA2, and CA3 regions of the hip- 
pocampus in NPAS2-deficient mice, be- 
cause these regions do not express NPAS2 
at high levels. We speculate that a different 
molecular clock may be operative in the 
CAI, CA2, and CA3 regions of the hip- 
pocampus. If so, this NPAS2-independent 
clock appears to oscillate with a molecular 

rhythm grossly similar to that specified by 
NPAS2. Finally, evidence of oscillating 
Per2 hybridization signal in non-NPAS2- 
expressing brain regions of NPAS2-defi- 
cient mice provides a positive control for 
the in situ hybridization reactions. 

Together, our observations indicate that 
NPAS2 is a functional analog of Clock. 
NPAS2 is expressed in a stereotypic distri- 
bution of forebrain nuclei critical for the 
processing of touch, pain, temperature, vi- 
sion, hearing, smell, and certain emotions 
such as fear and anxiety (20, 21). In noc- 
turnal animals such as the laboratory mice 
evaluated in this study, the NPAS2: 
BMALl heterodimer is likely active at 
night, as suggested by our light-dark cycle 
analysis of Per l ,  Per2, Cryl, and BMALl 
mRNA levels. It will be important to deter- 
mine whether the opposite pattern of activ- 
ity is observed in diurnal animals. Finally, 
we hypothesize that the NPAS2:BMALl 
heterodimer will control the expression of 
critical "output" genes in the forebrain, 
thereby rhythmically changing the physio- 
logical properties of brain nuclei express- 
ing this regulatory apparatus. These rhyth- 
mic changes in NPAS2-regulated gene ex- 
pression may underlie light-dark fluctua- 
tions in the states of alertness and tiredness. 
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