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Huntingtin is a 350-kilodalton protein of unknown function that is mutated in  
Huntington's disease (HD), a neurodegenerative disorder. The mutant protein 
is presumed t o  acquire a toxic gain of function that is detrimental t o  striatal 
neurons in the brain. However, loss of a beneficial activity of wild-type hun- 
tingtin may also cause the death of striatal neurons. Here we demonstrate that 
wild-type huntingtin up-regulates transcription of brain-derived neurotrophic 
factor (BDNF), a pro-survival factor produced by cortical neurons that is nec- 
essary for survival of striatal neurons in the brain. We show that this beneficial 
activity of huntingtin is lost when the protein becomes mutated, resulting in 
decreased production of cortical BDNF. This leads t o  insufficient neurotrophic 
support fo; striatal neurons, which then die. Restoring wild-type huntingtin 
activity and increasing BDNF production may be therapeutic approaches for 
treating HD. 

Huntington's disease is a dominantly inherit- 
ed neurodegenerative disorder characterized 
by chorea, cognitive abnormalities, and psy- 
chiatric disturbances beginning in mid-adult- 
hood and progressing toward death ( I ,  2).  
The disease is caused by a polyglutamine 
expansion in huntingtin that confers a toxic 
activity on this protein (3).  Huntingtin is 
highly expressed in the brain, and particularly 
enriched in cerebral cortex and striatum (4-
6 ) . It is a cytoplasmic protein that is essential 
during development for gastrulation (7-9) 
and neurogenesis ( l o ) ,and it is important for 
newonal survival in the adult (1  1-13). Wild-
type huntingtin is anti-apoptotic in neurons in 

the central nervous system (CNS) (13).Wild-
type huntingtin also reduces the toxicity of 
mutant huntingtin in vivo (14) .  Huntingtin 
also is involved in vesicle trafficking in the 
secretory and endocytic pathways (15, 16).  

Here we investigate whether wild-type 
huntingtin activity is important for the striatal 
neurons that selectively die in HD. These 
neurons require BDNF for their survival and 
differentiation (1  7-19). BDNF also protects 
stnatal neurons from excitotoxin-induced 
neurodegeneration (20).Despite some reports 
of BDNF mRNA transcription in adult stria- 
tal neurons ( 2 4 ,most evidence demonstrates 
that striatal BDNF arrives by anterograde 
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transport from the cortex via cortico-striatal BDNF production and secretion in cultured 
afferents (22, 23). CNS cells overexpressing full-length wild-

We analyzed whether wild-type hunting- type or mutant huntingtin (FLwt and FLmu 
tin influences BDNF production in normal cells, respectively) (13). Enzyme Linked Im-
and HD brains. We began b y  evaluating munosorbent Assays (ELISAs) for BDNF, 

A Fie. 1. Modulation of BDNF protein 
rekase and production by wiid-type

1::~ a ,-11z ]  1- and mutant huntingtin. (A) ELISA for 
BDNF. NGF. and NT3 performed on 
the supernatant from barental cells 

$ 100 ~ l l ~ ~ m ~ f i ~ ~ m ~ ~ ~(P) and subclones stably expressing 
FLwt or FLmu. BDNF level is signifi-

n o o cantly higher in FLwt cells (142.7 +: 
nwt nmu nwtnmu nwt 45.3 ng/mg of protein lysate) 

whereas BDNF production is lower 
B in FLmu cells (41.9 +: 12.3 ng/mg of 

3w protein lysate). Data are expressedimKi, -4 BDNF 14 kD 

as percentage of controls. Standard 
errors are from four independentex-_ _ _ Tubulin periments. Multiple ceU clones (at

5 ~m 5th -or 6th passage) that expressed
P n w t  n m u  CO+ similar levels of FLwt and FLmu hun-

o tingtin were used and generated 
P n w t  n m u  similar results. *P < 0.05, **P < 

0.01 versus parental cells, analysis of 
c variance (ANOVA) test. Web figures 

::E~+J(42) show that FLmu and FLwt cells 
used in the study exhibit similar lev-

E 
% 

els of expression of the transgene. 
ba 50 (B) Left panel, ELlSA assay on cell 
to ** # 

lysates. Data are expressed as per-
= 25 p 250 

FLmu 
** centage of controls (parental cells, 

o o P). Standard errors are referred to  
24 48 72 96 I B ~ ,  717 109/71091109 three independent experiments. *P 

< 0.05, **P < 0.01 versus parental 
cells, ANOVA test. Right panel, Western analysis performed on the same lysates. Equal loading is 
demonstrated by tubulin-immunoreactive band. Positivecontrol (co+), human recombinant BDNF. 
(C) BDNF accumulation over time. Time zero is when cells are seeded. (D) Measurementof BDNF 
level in cultured CNS cells previously established from heterozygous (10917) and homozygous 
(1091109) knock-in mice (27, 28), and compared to  wild-type littermates (717). BDNF levels 
(expressed as ng/mg of protein lysate) were as follows: 717 cells, 233.8 2 16.3; 10917cells, 100.6 +: 
0.4; and 1091109 cells, 50.1 +. 4.1. Shown is the mean of three independent experiments, **P < 
0.01 versus 717 cells, #P < 0.01 versus 10917 cells, ANOVA test. 

Fig. 2. Wild-type and mutant 
huntingtin differently modulate 
BDNF gene transcription. (A) 
Left, determination of BDNF, 
CNTF, NGF, and NT3 mRNA lev-
els by RPA in P, FLwt, and FLmu 
cells. Higher BDNF mRNA levels 
were found in FLwt cells, where-
as FLmu decreased BDNF levels. 
Actin probe is included as inter-
nal control. Right, quantitative 
analyses of the BDNF mRNA lev-
els. The peak densitometric area 

BDNFmRNA- -740 bp 

NGF mRNA 
Y ~ . L  -401 bp 

NT3 mRNA 
-544 bp 

P-actin mRNA 

150 

100 

50zWo P nwt F L ~ u  

was noimalized over the peak -126 bp
densitometric area of the B-ac-
tin band. Data are expressed as d r r ; i  

percentage of controls. A mean 2s i2 2 2 

of three different experiments is 
p~ g

shown. *P < 0.05 and * *P < 
0.01 versus parental cells, P n w t  n m u  $ I 
ANOVA test. (B) Left, RPA. Cells Actino D o jXJ50 
were exposed for 6 hours to  ac- flgIrn1 ._ I~.L- BDNF *t *-II* 

mRNA 
I * 

tinomycin-D. A similar decrease FLW mu 
in BDNF mRNA level was found 

---
Actlno D 0 10 20 0 10 20 0 10 20 

in all clones, including the FLwt ~ d m l  

cells. Right, densitometric analy-
sis of the BDNF and 6-actin mRNA levels, performed as described in (A). Data representthe average 
of three independent experiments. *P < 0.05 and * *P < 0.01 versus untreated cells, ANOVA test. 

nerve growth factor (NGF), neurotrophin-3 
(NT3), neurotrophin-4 (NT4), and ciliary 
neurotrophic factor (CNTF) were performed 
on the supernatant from parental (P) and 
clonally derived FLwt and FLmu cells (Fig. 
1A) (24). Although there were no important 
changes in NGF and NT3 secretion among 
the various cell clones, BDNF release in 
FLwt cells was significantly higher than in 
parental cells (94.6% above parental). B y  
contrast, FLmu cells secreted 52.5% less 
BDNF than parental cells. CNTF and N T 4  
were not detectable inthe same supernatants. 
BDNF measurements in the cell lysates gave 
similar results (Fig. lB ,  left). Analogous 
changes were also detected b y  Western blot-
ting o f  the BDNF protein (Fig. lB ,  right) 
(25). The BDNF level progressively in-
creased inFLwt cells with time after plating 
and reached a plateau at 120 hours (Fig. lC), 
whereas inFLmu cells the amount o f  BDNF 
produced always remained below that o f  pa-
rental cells. Thus, wild-type and mutant hun-
tingtin modulate BDNF protein production 
differently. Furthermore, BDNF content is 
lower in cells expressing full-length mutant 
huntingtin. 

Modulation o f  BDNF levels b y  huntingtin 
is neuron-specific; no changes were observed 
in fibroblast 3T3 cells stably overexpressing 
the full-length wild-type or mutant huntingtin 
(26). Analyses o f  BDNF in CNS cells previ-
ously obtained from heterozygous and ho-
mozygous Hdh knock-in mice (27) [inwhich 
a 109 C A G  triplet repeat has been inserted 
into the endogenous mouse huntingtin gene 
(28)] revealed a mutant huntingtin dosage-
dependent decrease in BDNF levels (Fig. 
ID). This implies either the loss o f  a potential 
protective effect o f  the wild-type protein or, 
alternatively, increased activity o f  a mecha-
nism specific to the mutant protein. 

Recent evidence indicates a role for tran-
scriptional dysregulation in HD (29). In 
transgenic mice, the mutant amino-terminal 
huntingtin fragment affects the expression 
level o f  several genes, including neurotrans-
mitter receptor genes and intracellular signal-
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ing proteins (30, 31). Although wild-type 
huntingtin is predominantly a cytoplasmic 
protein, it is possible that small amounts of 
full-length protein or proteolytically cleaved 
fragments are localized in the nucleus (32) 
and are involved in transcriptional regulation 
of target genes. Alternatively,huntingtin may 
act within the cytoplasm by recruiting tran-
scription factors. However, there are no re-
ports of transcriptional activity of wild-type 
huntingtin. We analyzed whether full-length 
huntingtin influences BDNF protein produc-
tion at the level of gene transcription. We 
performed RNase Protection Assay (RPA) 
(33) for BDNF, CNTF, NGF, and NT3 rnR-
NAs in parental, FLwt, and FLmu cells (Fig. 
2A, left). In FLwt cells, BDNF mRNA levels 
were increased 2.3-fold over those in the 
parental cells (Fig. 2A, right). In contrast, and 
consistent with the ELISA data, FLmu cells 
showed a 40% decrease in BDNF mRNA 
level as compared with parental cells (Fig. 
2A, right). CNTF, NGF, and NT3 mRNA 
levels were not significantlychanged in FLwt 
and FLmu cells from those in parental cells 
(Fig. 2A, left). Exposure of the cells to in-
creasing doses of actinomycin-D, an inhibitor 
of gene transcription, generated a similar de-
crease in BDNF mRNA levels in all clones, 
including FLwt cells (Fig. 2B). Thus, hun-
tingtin modulates BDNF production at the 
transcriptional level. 

The structure of rat BDNF gene is com-
plex: four 5' exons are linked to separate 
promoters and one 3' exon encodes the 
BDNF protein (34). These promoters are al-
ternatively used, generating a tissue-specific 
(35) and stimulus-induced (36) pattern of 
BDNF expression. To evaluate whether the 
modulatory effect of huntingtin on BDNF 
gene transcription results from the preferen-
tial activation of one or more of these pro-
moter regions, we performed reverse tran-
scriptase-polymerase chain reaction (RT-
PCR) using primers specifically recognizing 
each of the four BDNF exon-specificmRNAs 
(37). We found that parental cells (P, Fig. 
3A) express exon 11,111, and IV mRNAs (the 
two fragments in exon I1 mRNA lanes result 
from alternative usage of splice sites). FLwt 
cells showed an increase in exon I1 mRNAs 
(Fig. 3A). In contrast, a drastic depletion in 
exon I1 mRNAs as well as in exon 111and IV 
mRNAs was seen in FLmu cells (Fig. 3A). 
RNAse protection experimentsperformed us-
ing cRNA probes specificallyrecognizingthe 
various exons confirmed these data (Fig. 3B, 
left panel) and further indicated a 1.7-fold 
increase in exon I1 mRNAs in FLwt cells 
(Fig. 3B, right graphs) (38). 

To assess quantitatively the influence of 
huntingtin on the transcriptional activity of 
each of the four BDNF promoters, we trans-
fected parental, FLwt, and FLmu cells with 
different BDNF promoter-reporter gene con-

structs containing promoter regions 11, 111, 
and IV cloned upstream of the bacterial 
chloramphenicol acetyltransferase (CAT) re-
porter gene (39). Promoter I1 activity in-
creased ninefold in FLwt cells, whereas pro-
moters I11 and IV were not affected (Fig. 3C). 
In contrast, promoter 11,111, and IV activities 
were significantly lower in FLmu cells than 
in parental cells. Thus, wild-type and mutant 
huntingtin modulate BDNF gene transcrip-
tion positively or negatively, respectively, by 
differentially influencing the activity of the 
BDNF promoters. 

spiny neurons at 12 months of age (40). 
Cerebral cortex, hippocampus, and striatum 
were isolated from 9-month-old YAC 18 and 
YAC72 mice (which are not symptomatic at 
this age) as well as wild-type littermates (L), 
and BDNF protein content was measured by 
ELISA (Fig. 4A). At this age, YACl8 mice 
exhibited a statistically significantincrease in 
BDNF production in cerebral cortex. Similar-
ly, the striatum of YAC18 mice contained 
more BDNF than wild-type littermates (41). 
BDNF was also increased in YACl8 hip-
pocampus. Remarkably,when the same anal-

We next analyzedwhether in vivo produc- ysis was conducted in YAC72 mice, a statis-
tion and delivery of cortically derived BDNF tically significant reduction in cortical and 
to the striatum is similarly influenced by hippocampal BDNF was seen, as well as a 
huntingtin. We used a transgenic mouse mod- 48% reduction in cortically derived BDNF in 
el of HD overexpressingwild-type or mutant 
full-length huntingtin (YAC18 and YAC72 
mice, respectively) (40). In these mice, hu-
man huntingtin is expressed under its own 
promoter, which results in a developmental 
and tissue-specific expression pattern similar 
to that seen for endogenous huntingtin. No 
neurodegeneration is observed in YAC 18 
mice, but YAC72 mice develop a selective 
neurodegeneration of the striatal medium 

striatum (41). 
To further demonstrate that changes in 

striatal BDNF in YAC 18 and YAC72 mice 
result from variations in cortical BDNF 
gene transcription, we analyzed BDNF 
mRNA levels in striatum as done for Fig. 
3A. In agreement with others showing low 
BDNF mRNA levels in this brain region, 
no detectable bands were found after am-
plification of exon I, 11, and IV mRNAs, 

Fig. 3. Influenceof huntingtin A control P n w t  E m u  
on the transcription of the I I1 111 IV I II III IV I II III IV I 11 III IV 

~ N Afrom adult hippoc&pus P n w t n m u
amplified in each lane. Exon I B - -

exon I r* exon n 
mRNA is not detectable in mRNAcontrol hippocampus-derived igm50 

RNA or in cells, consistent exon I1 0 
with the finding that this ~ R N A  "' P F L W ~ F L ~ U250
mRNA is transcribed only af- 2w1 exon 1111 
ter kainic acid treatment exon III 
(34). Instead, in FLwt cells, ~ R N A  
wild-type huntingtin affects 
positivelythe transcription of exon IV .,--, 

exon II mRNA. In contrast. mRNA 
mutant huntingtin abolished P-actin 
exon 11, Ill, and IV mRNAs "l"inbrLJsoo 
production. (B) Left panel, P FLwtFLmu 
determinations of exon I, II, 
Ill, and IV mRNA levels by C Exon 11 Exon Ill Exon IV 
RPA. Probing with the B D N ~  

- -

P n w  F L ~ U  P n w t  F L ~ U  P n w t  nmu 
exon II cRNA probegenerates 
two protected bands corre-
spending to different spliced 
forms of'exon II mRNA. Right 
panel, densitometric analysis 
ofp-actinBDNFlevelsexonsperformedmRNAs andas yzm] ~ ~ ~ ~ 6 0 0 0 0 

described in Fig. 2A. Data E 
represent the average of u" 10000 2000 I 40000 

three different experiments. 5000 *.* 20000 
*P <0.05,* *P <0.01versus 0
parental cells, ANOVA test. 0 

P n w t  n m u  P n w t  m u P n w t  n m u  
(C) Upper panel, CAT assay. 
BDNF promoter constructs encompassing promoter regions 11, Ill, and IV cloned in front of the 
bacterial CAT reporter gene were transiently transfected in P, FLwt, and FLmu cells. FLwt activated 
BDNF promoter II, whereas FLmu repressed promoters 11, Ill, and IV activity. Lower panel, 
quantification of the acetylated reaction products from three different experiments. *P  <0.05,**P 
< 0.01 versus parental cells, ANOVA test. Arrow, acetylated chloramphenicol. 
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whereas exon I11 mRNA was present at 
very low levels (Fig. 4B, lower panel). 
Striatal BDNF mRNA levels were not mod-
ulated by wild-type or mutant huntingtin; 
BDNF mRNA levels in YAC18 and 
YAC72 striata were indistinguishable from 
those in wild-type littermates. By contrast, 
analysis of mRNA levels from exons I 
through IV in cerebral cortex and hip-

Fig. 4. Modulation of A 
wad-type and mutant 
huntingtin on cortical 
BDNF production. (A 
and B) Changesin BDNF 
protein and mRNA lev-
els in YACl8 and YAC72 
mice overexpressing the 
wild-type or mutant 
protein, respectively. (A) 

pocampus from YACl8 and YAC72 mice 
revealed an expression pattern similar to 
that observed in vitro (Fig. 4B, upper and 
middle panels). In particular, increased 
BDNF exon I1 and exon I11 mRNAs levels 
were observed in the cerebral cortex and 
hippocampus of YAC18 mice. In contrast, 
exon I1 mRNA was depleted and BDNF 
exon I11 and IV mRNAs were lower in the 

L YAC 18 YAC72 L YAC 18YAC72 

BDNF ELIWassay 'd 
lysatesfrom ctx,hip, and B L YAC 18 YAC72 
str from 9-month-old ---
YAC tramgenicmice. In- I 11 III IV I 11 In IV I II  nl IV 

creased BDNF levels ctx 
- 600 bp 

were found in ctx, hip, 
and str of YACl8 mice. 309 bp -

273 bp -
In contrast,YAC72 mice, 230 bp - - 200 bp 
which are presymptom- I. YAC IX Y . - \ c ~ ?---
atic at this age showed I 11 111 IV I II 1n rv I 11 111 rv
significantlylower BDNF hip 
levels. Data are ex- - 600 bp 
pressed as percentage 

309bp -
above control (L). Stan- 273 bp -

230 bp - - 200 bpdard errors refer to four 
independent experi- ---L YAC 18 \"\C72 
merits. Duplicate km- I 1 1  I I I  IV I 11 III  IV  I 11 111 IV 
ples for striatum were str 
analyzed due to the - 600 bp 

more limited amount of 309 bp -
tissue available. One of 273 bp -

230 bp -
the two measurements - 200 bp 

is reported; the second Cgeneratedsimilarresults. 
*P < 0.05, versus wild- co HD _I]huntingtinprotein 

type littermates, BDNF mRNA 71Tubulin 
ANOVA test (B) Hun-
tingtin influences BDNF )yY SNAP-25mRNA huntingtin mRNA 
gene transcription in 
vivo. Levels of BDNF - - p-actin 

exon I to IV mRNAs g 125 C0 BDNF 
were measured as d e  
scribed in Fig 3A. The 1~1levels of exon I to N :imRNAs in the striatum 0 

8 

of YAC18 and YAC72 
(lower panel) tramgenic 
mice were no different from those of L In contrast, in YACl8 mice, exon I I  and exon I l l  mRNA levels in 
cerebralcortex and hippocampuswere higher than in wild-type littermates. In the same tissuesfrom YAC72 
mice, exon I I  mRNA was not detected,whereas exon I l l  and exon IV mRNAs were decreased.(C) BDNF levels 
in samplesfrom frozenfrontoparietalcortex obtained from an autopsyof age-matched controls (co)and HD 
patients (two patients were analyzed for each group, grade I I  and Ill). One of the two measurements 
conducted on separate samples is shown. Upper panels, analysis of BDNF mRNA levels evaluated by 
semi-quantitativeradioactive RT-PCR SNAP-25mRNA levels are also shown. BDNF mRNA levels were lower 
in HD cerebral cortex than in controls. Lower graph, ELISA of BDNF protein levels. BDNF protein was lower 
in HD cerebral cortex (45.2%less than control).Similar BDNF levels were 0bSe~edin another HD patient. 
**P <0.01 versus control ANOVA test (D)Measurement of huntingtin protein (upperautoradiograms)and 
its mRNA levels (middlepanels),before (-) and after (+) exposure of CNS cells to apoptotic stimuli,such as 
1 mM 3-nitropropionicacid for 30 hours.The same result was obtained after 18hours (notshown).Cultures 
of conditionally immortalized CNS cells grown at the permissive temperature (33°C)were used (73,27).No 
changes in cell number were found in these conditions at the time point analyzed. Depletion of intact 
fuClength huntingtinprotein occurs in apoptoticcellsas compared to untreated cells.Huntingtin mRNA level 
remained unchanged. Lower graph, BDNF production is reduced in the conditionsdescribed above. Shown is 
a mean of three independent experiments. **P < 0.01 versus untreated cells, ANOVA test 

cerebral cortex and hippocampus of 
YAC72 mice. These results were also con-
firmed by RPA experiments on RNA ex-
tracted from the various brain regions of 
wild-type littermates YACl8 and YAC72 
mice (42). 

Thus, in vivo, wild-type huntingtin posi-
tively modulates the transcription of the 
BDNF gene. BDNF gene transcription and 
protein production are lost in cells and cere-
bral cortex of transgenic mice expressingmu-
tant huntingtin, resulting in an in vivo down-
regulation of cortically derived BDNF in the 
striatum. 

Analyses of BDNF levels in cortical tissue 
from HD patients support this finding. There 
was a 45% decrease in BDNF protein in the 
fronto-parietal cortex of HD brains (grades 11 
and 111) (Fig. 4C, lower graph). Semiquanti-
tative RT-PCR deteminations on a parallel 
sample from the same tissue also show a 65% 
loss in BDNF mRNA levels (Fig. 4C, upper 
panels) (43). The finding that huntingtin-
mediated BDNF gene transcription and pro-
tein production is decreased in human HD 
brain regions that normally project to stria-
turn suggests reduced trophic support for stri-
atal neurons during the course of the disease. 
A similar semiquantitative RT-PCR analyses 
was performed to evaluate levels of NGF, 
CNTF, and NT3 in the same human cortical 
samples from control and I-ID subjects. 
Whereas NGF and CNTF mRNA levels were 
unchanged, those of NT3 decreased (42). 

Transgenic mice expressing an NH,-termi-
nal fragment of mutant huntingtin andcharac-
terized by well-documented caspases activation 
are shown to express lower amounts of full-
length wild-type huntingtin (44). We investi-
gated whether BDNF levels depend on the pres-
ence of an intact full-length wild-type hunting-
tin protein. We exposed cultured CNS cells to 
apoptotic stimuli [previously shown to activate 
caspases in the same cells; see (13)], and mea-
sured full-length wild-type huntingtin protein 
and its mRNA levels as well as BDNF produc-
tion (45). Endogenous full-length wild-type 
huntingtin protein (but not mRNA) was deplet-
ed after an apoptotic stimulus (Fig. 4D). This 
and other data (44) raise the possibility that 
activation of the apoptotic cascade leads to the 
loss of full-length wild-type huntingtin and oth-
er essential cellular proteins and may represent 
a general response of newns to severe stress 
conditionsimposed by environmental or genet-
ic insults. Under the same experimental condi-
tions, BDNF protein levels were lower than in 
untreated cells (Fig. 4D, lower graph). 

HD is thought to be a gain-of-function 
disease affecting the brain's striatal neurons. 
But more recent results in neurons and in 
mice highlight the possibility that loss of 
wild-type huntingtin's beneficial functions 
may also contribute to the disease phenotype 
(46). 
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Huntingtin is widely expressed but is 
localized in that 

project to striaturn (6). Here, we show that 
full-length wild-type huntingtin increases the 
transcription of the BDNF gene, influencing 
production and delivery of cortically derived 
BDNF to striatal targets, and that a cortical 
dysfunction occurs in HD involving the loss 
of huntingtin-mediated BDNF production. 

We suggest that selective vulnerability of 
a subset of neurons in HD (and in other 
CAG-repeat diseases) may result from the 
loss of the activitv of the wild-tvpe urotein(s) 

.A ~, 

for the functioning of these cells. In 
HD, a major defect in wild-type huntingtin 
activity is localized in the cortical afferents to 
the striaturn. 

L~~~of cortical BDNF combined with the 
recent successful treatment of HD patients 
with neural cell theraoies ( 47 ) . orovide suv- . , 

for the notion that increasing intracer;- 
BDNF levels may be and 

suggest that therapeutic drugs aimed at mim- 
icking or increasing the normal activity of 
wild-type huntingtin may provide an effec- 
tive strategy for treating HD. 
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The 2,160,837-base pair genome sequence of an isolate of Streptococcus 
pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, 
meningitis, and otitis media, contains 2236 predicted coding regions; of these, 
1440 (64%) were assigned a biological role. Approximately 5% of the genome 
is composed of insertion sequences that may contribute to genome rearrange- 
ments through uptake of foreign DNA. Extracellular enzyme systems for the 
metabolism of polysaccharides and hexosamines provide a substantial source 
of carbon and nitrogen for 5. pneumoniae and also damage host tissues and 
facilitate colonization. A motif identified within the signal peptide of proteins 
is potentially involved in targeting these proteins to the cell surface of low- 
guaninelcytosine (GC) Gram-positive species. Several surface-exposed proteins 
that may serve as potential vaccine candidates were identified. Comparative 
genome hybridization with DNA arrays revealed strain differences in 5. pneu- 
moniae that could contribute to differences in virulence and antigenicity. 

Streptococcus pneumoniae (pneumococcus) has moniae strain with DNA from a capsulated vir- 
played a pivotal role in the fields of genetics and ulent strain. This work highlighted the impor- 
microbiology. The pioneering studies of Avery, tance of the bacterial polysaccharide capsule as 
MacLeod, and McCarty in 1944 (1)demonstrat- a key pathogenicity factor. 
ed that DNA is the true hereditary material by As a human pathogen, S. pneumoniae is the 
transforming a noncapsulated, avirulent S.pneu- most common bacterial cause of acute respira- 
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tory infection and otitis media and is estimated 
to result in over 3 million deaths in children 
every year worldwide from pneumonia, bacte- 
remia, or meningitis (2). Even more deaths oc- 
cur among elderly people, among whom S. 
pneumoniae is the leading cause of community- 
acquired pneumonia and meningitis (3). Since 
1990, the number of penicillin-resistant strains 
has increased from 1 to 5% to 25 to 80% of 
isolates, and many strains are now resistant to 
commonly prescribed antibiotics such as peni- 
cillin, macrolides, and fluoroquinolones (4). 

The complete genome sequence of a capsu- 
lar serotype 4 isolate of S. pneumoniae [desig-
nated TIGR4 (5); TIGR indicates The Institute 
for Genomic Research] was determined by the 
random shotgun sequencing strategy (6) (Gen-
Bank accession number AE005672; see www. 
tigr.org/tigr-scripts/CMR2/CMRHomePage. 

spl). This clinical isolate was taken from the 
blood of a 30-year-old male patient in 
Kongsvinger, Norway, and is highly invasive 
and virulent in a mouse model of infection (7) .  

The genome consists of a single circular 
chromosome of 2,160,837 base pairs (bp) with a 
G + C content of 39.7%. Base pair 1 of the 
chromosome was assigned within the putative 
origin of replication. Of the 2236 genes identi- 
fied (8), 1155 are located on the right of the 
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