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Analvsis 

Revealed by Directly Coupled 
Methane-Consuming Archaea studies that combine phylogenetic surveys of 

ribosomal RNAs (rRNAs) with structural and 
stable isotopic analyses of lipids have re-
vealed new information about methane-oxi- 

Isotopic and Phylogenetic 
dizing microbes in anoxic marine sediments 
(3, 5, 6). However, the stable isotopic and 
phylogenetic methods used in these studies 
were uncoupled, so identification of the spe- 
cific microbes mediating- AOM is based 

Victoria J. Orphan,'* Christopher H. House,'*? Kai-Uwe Hinri~hs,~ mainly on indirect lines of evidence. 

Kevin D. McKeegan: Edward F. DeLongl? 
Here, we report a cultivation-independent 

study of marine microbial assemblages in 
anoxic methane-rich sediments that com-

Microorganisms living in anoxic marine sediments consume more than 80% of bined microbial cell identification using ribo- 
the methane produced in the world's oceans. In addition to single-species soma1 RNA-targeted fluorescent in situ hy- 
aggregates, consortia of metabolically interdependent bacteria and archaea are bridization (FISH) (7) with secondary ion 
found in methane-rich sediments. A combination of fluorescence in situ hy- mass spectrometry (SIMS) (8).After rRNA- 
bridization and secondary ion mass spectrometry shows that cells belonging to targeted probes were applied to identify mi- 
one specific archaeal group associated with the Methanosarcinales were all crobial cells, the stable isotope composition 
highly depleted in 13C (to values of -96%0). This depletion indicates assimi- of the identified cells was determined by 
lation of isotopically light methane into specific archaeal cells. Additional using SIMS. Coupled FISH-SIMS provided a 
microbial species apparently use other carbon sources, as indicated by signif- measure of the stable carbon isotope compo- 
icantly higher 13C/12Cratios in their cell carbon. Our results demonstrate the sition of individual phylogenetically identi- 
feasibility of simultaneous determination of the identity and the metabolic fied cell aggregates. Uncultured, naturally oc- 
activity of naturally occurring microorganisms. curring microbial cells that utilize methane as 

the source of cell carbon could therefore be 
Microbes critically impact global geochemi- relevant microorganisms are difficult to iso- identified unambiguously. 
cal cycles. Although the general ecological late in pure culture. Approaches that combine Previous studies suggested that cell aggre- 
importance of microbial activity is well rec- phylogenetic and stable isotope analyses have gates of archaea belonging to the Methano-
ognized, the identity and involvement of mi- considerable potential for linking microbial sarcinales (ANME-2 group), surrounded by 
crobes in specific biogeochemical cycles are diversity with in situ activity (2-4). Recent sulfate-reducing bacteria related to the De-
often poorly understood. For example, the 
anaerobic oxidation of methane (AOM) is a Table 1. Carbon isotopic compositions (versus PDB) and source assignments of selected extracted 

widespread and geochemically well docu- archaeal ether lipids and bacterial fatty acids (FAs). SRB, sulfate-reducing bacteria. 

mented process [e.g., ( I ) ] ,  yet very little is 
known about the physiology, biochemistry, Eel River Basin, 3 t o  5 cm Santa Barbara hydrocarbon seep 

and identity of the microbes involved. One Compound 

reason for this is that often the ecologically 	 613C (%o) Source assignment 613C (%o) Source assignment 

Archaeol -104.1 ANME-2 Traceslnot analvzed Archaea 
sn-2-Hydroxyarchaeol -107.6 ANME-2 Traceslnot analyzed Archaea

'Monterey Bay Aquarium Research Institute, Moss 
Landing, CA 95039, USA. 2Department of Geo- n-C,,,, FA -69.1 SRB -22.7 Algae, bacteria 

sciences, The Pennsylvania State University, Univer- i-C15.0 FA -51.3 SRB, other bacteria -25.4 Bacteria mainly 

sity Park, PA 16802, USA. 3Department of Geology ai-C15:~ FA -51.9 SRB, other bacteria -19.0 Bacteria mainly 

and Geophysics, Woods Hole Oceanographic Institu- n-C16:l(07) FA* -62.8 SRB -26.0 Algae, bacteria 
tion, Woods Hole, MA 02543, USA. 4Department of n-Ci6:i(05) FA* -76.1 SRB -21.2 Algae, bacteria 
Earth and Space Sciences. Universitv of California. Los n-C16:0 FA -44.1 SRB, other bacteria, -20.3 Algae, bacteria 
Angeles, CA 90095, USA. algae 

10-Me-C16,, FA -69.4 SRB Not  present -
*These authors contributed equally to  the work. 

?To whom correspondence should be addressed. E- *Double-bond positions were determined from nearby samples with almost congruent fatw acid distributions (24) and
- , 

mail: chouse@geosc.psu.edu and delong@mbari.org refer only to the sample from the Eel River Basin. 
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sulfosarcina were involved in AOM (5, 6). 
To test this hypothesis, microbial cell aggre- 
gates were recovered from marine sediments 
(intervals 3 to 5 cm deep) at methane seeps in 
the Eel River Basin, California (9). The sed- 
iments contained highly I3C-depleted ar- 
chaeal and bacterial lipid biomarkers (10) 
(Table l) .By using FISH-SIMS, 6I3C (11) 
was profiled from the periphery to the interior 
of separate cell aggregates (in approximately 
0.75-pm increments) by repeated sputtering 
of the aggregate surface with a Cs+ beam 
(12-15). These analyses revealed that cell 
aggregates binding a specific archaeal probe 
(ANME-2) in their inner core, and a bacterial 
Desulfosarcina-Desulfococcus (DSS) probe 
on their periphery, were composed of ex- 
tremely depleted carbon with 6I3C values as 
low as -96%0 (Figs. 1 and 2, A and B). These 
isotopic signatures are best explained by as- 
similation of carbon from a 13C-depleted 
source. The only plausible source with suffi- 
ciently 13C-depleted carbon is methane and, 
indeed, the 6I3C values of methane obtained 
from adjacent seep sites in Eel River Basin 
range between -63 and -35%0 (16). 

In addition to putative syntrophic ANME- 
UDSS consortia, cell aggregates that contained 
the archaeal ANME-2 group, but not bacteria, 
were also occasionally observed (Fig. 2, C and 
D). Isotopic analysis of these monospecific 
ANME-2 aggregations also revealed extreme 
13C-depletions, reaching SI3C values of -85%0, 
again indicating that the major portion of 
their biomass was derived from methane. 
That these 6I3C values are lower than coex- 
isting methane indicates significant isotopic 
fractionation of the assimilated carbon by the 
methane-oxidizing archaeal group, ANME-2 
(Fig. 3). Although bacteria-free aggregations 
of the Methanosarcinales-related ANME-2 
group in methane-rich marine sediments have 
not been previously reported (5, 6), our ob- 
servations indicate that this archaeal group 
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Fig. 1. A schematic diagram of an archaeal 
ANME-Zlbacterial Desulfosarcina (DSS) aggre- 
gate, showing the direction of penetration of an 
ion beam, indicated by the arrow. The graph 
shows the S13C profile obtained with the ion 
microprobe versus time (minutes of Cs+ beam 
exposure) through the same 1 0 - ~ m  aggregate 
that is depicted in Fig. 2. A and B. 

may sometimes exist independently of syn- 
trophic partners. 

In contrast to the archaeal-bacterial con- 
sortia, the carbon isotopic compositions of 
other microbial aggregates from the same 
Eel River Basin sample were about -20%0. 
This value is consistent with assimilation of 
organic carbon derived from photosynthetic 
primary productivity or from the fixation of 
CO, (Fig. 2D). For comparison, we ana- 
lyzed sulfate-reducing bacterial aggregates 
originating from a shallow water hydrocar- 
bon seep offshore Santa Barbara, Califor- 
nia. Microscopic surveys using FISH of the 
hydrocarbon-impregnated sediment sample 
revealed abundant bacterial aggregates 
phylogenetically related to the Desulfosar- 
cina, but no ANME-2 archaea. Ion micro- 
probe analyses of Desulfosarcina aggre- 
gates displayed 613C values similar to those 
of sedimentary organic carbon (1 7) and oils 
from the underlying Monterey Formation 
(Fig. 2, E and F). Carbon isotopic compo- 
sitions from fatty acids extracted from the 
hydrocarbon seep sediment ranged from 
-26 to -19% (Table 1). No lipids with 
isotopic compositions indicative of micro- 
bial utilization of methane-derived carbon 
were detected (18). Moreover, the fatty 
acid distribution from the oil seep differed 
significantly from that of the Eel River 
Basin methane seep, suggesting that these 

two sites harbored different bacterial com- 
munities. Both lipid and whole-cell isotopic 
data suggest that anaerobic oxidation of 
methane is not a significant biogeochemi- 
cal pathway at this site. 

The variation in 613C values of aggre- 
gates containing the archaeal ANME-2 was 
greater than that of other cell aggregates. 
Significant isotopic variations were ob- 
served between individual ANME-2/DSS 
consortia, with archaeal-bacterial aggre- 
gates falling into two isotopically distinct 
groups (Fig. 3). For aggregates with rela- 
tively high 613C values, methane was prob- 
ably not the exclusive carbon source. De- 
spite the large range in isotopic values, all 
the ANME-2/DSS consortia exhibit lower 
613C values than Desulfosarcina cell clus- 
ters and other cell aggregates, which are 
characterized by average 613C values in the 
range -30 to -15% (Fig. 3). 

To date, there have been no reported 
studies of single-cell isotopic variation for 
microbes, making interpretations of the 
variability we observe difficult. Prelimi- 
nary SIMS data obtained for reference from 
pure cultures of cyanobacteria revealed 
substantial carbon isotopic variation 
(Gloeothece sp. 27152: mean 6°C = 
-17.1 + 2.1%, SD = 7.5; n = 13; and 
Gloeocapsa sp. 29159: mean 613C = 
-24.3 ? 1.3%, SD = 6.3; n = 23), reflect- 

Fig. 2. Whole-cell , 
FISH of methane-oxi- 
dizing consortia and 
other cell aggregates 
in methane seep sed- 
iments, identified mi- 
croscopically and tar- 
geted with the ion mi- 
croprobe. (A) Overlaid 
epifluorescent image 
of a Cyd-labeled ar- 
chaeal ANME-2 (in red) 
and fluorescein-labded 
bacterial Desulfosamna 
(DSS, in green) cell ag- 
gregate from Eel Rim 

for DNA) and average 
613C value of the amzre I 

obtained by &s. 
C) Cy-3-Labded ar- 

chaeal ANME-2 aggre- 
gate. (D) DAPl stain of 
same field showing iso- 
topic values of both the 
ANME-2-targeted ag- 
gregate and a cell aggre 
gate not targeted by ei- 
ther the archaeal 
ANME-2 or bacterial 

C D 

-7% 

k i n .  (B) Conwponding -20% 4 
DAPl (nonspecific stain 

santaE&ra hydrocar- 
bon seep targeted with fluorescein-labeled bacterial DSS probe. (F) Corresponding DAPl stain of same field 
and average 613C values obtained by SIMS. Scale bar, 10 pm in each panel 
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Fig. 3. Ion microprobe mea-
sured 813C profiles for individ- 
ual cell aggregates recovered 
from marine methane seep 
sediments (Eel River Basin* 
and Santa Barbara Basin) (72). 
Numbers indicate sample 
number and designate the 
start of ion microprobe analy- 
sis for each cell aggregate. In 
most cases, extended analyses 
produced isotopically lighter 
values, as continued sputtering 
penetrated through the aggre- 
gate interior where the ar-
chaeal ANME-2 microbes are 
concentrated. In contrast, the 
bacterial samples (10 through 
14) exhibited relatively con-
stant 813C profiles with depth. 
The hatched area represents 
the range of 813Cvalues mea- 
sured for CH, extracted from 
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Aggregate 
category 

8 
3
u -50 

pore water from adjacent Eel River Basin methane seeps (average -50%0; n = 28). The relatively high 
813Cvalues for pore water CH, are likely due t o  isotopic enrichment from active methanotrophy. 

ing some degree of organism-specific het- 
erogeneity probably magnified by closed- 
system culture conditions. Whatever the 
causes, the heterogeneity of isotopic values 
in cell populations does not appear to be an 
artifact of the SIMS procedure (19). In the 
context of the cell aggregates analyzed, the 
large 813C variations we observed may re- 
flect differences in the relative proportion 
of bacterial and archaeal biomass; hete-
rogeneity in physiological status; dilution 
of the isotopic signal by contaminating ma- 
terials. such as sediment varticles (20):.. 	 ,, 
or isotope effects caused by methane 
depletion. 

We also observed significant variation 
in 813C between the outer and inner por- 
tions of some ANME-2lDSS cell clusters, 
which exhibit a distinctive isotopic trend to 
lower 813C values with increasing penetra- 
tion into the aggregate (Figs. 1 and 3). 
Notably, the average isotopic variation 
within- single ANME-~IDSS aggregates 
was significantly greater (18%0; n = 8) than 
aggregates composed of other microbial 
species (5%0; n = 5). This observation sug- 
gests a highly 13C-depleted inner core of 
methane-oxidizing archaea, surrounded by 
a somewhat less 13C-depleted outer shell of 
sulfate-reducing bacteria. These cellular 
data are concordant with isotopic analyses 
of lipid biomarkers extracted from the same 
samples (Table 1). The somewhat lower 
(by about -10 to -20%0) 613C values of the 
archaeal lipids compared with the total cell 
carbon determined by SIMS is in agree- 
ment with previous observations of isotopic 
compositions of individual lipids versus 
biomass of Methanosarcina barkeri grown 
on trimethylamine (21). The isotope pat- 
terns we observed in the total carbon of 
individual ANME-2lDSS cell aggregates 

are consistent with the transfer of methane- 
derived intermediates (possibly acetate or 
CO,), in addition to hydrogen, from meth- 
ane-consuming archaea to their sulfate-re- 
ducing bacterial partners (22, 23). 

Although ion microprobe mass spec-
trometry has been used in diverse applica- 
tions in the earth and planetary sciences, rang- 
ing from interplanetary dust particles (14) to 
microfossil analyses (13), this technique had . ,  
not yet been applied to active microbi cells 
from environmental samples. The ability to mi- 
crosco~icallv characterize microbial cells di- . , 
rectly with FISH-SIMS provides an effective 
strategy for 
groups participating in the anaerobic oxidation 
of methane, as chemotaxonomic and phyloge- 
netic evidence indicates diverse microbial as-
semblages are involved in this process (6, 24- 
26). This approach can provide direct informa- 
tion on the identity of environmentally relevant 
microorganisms, as well as their metabolic ac- 
tivities i d  ecological interactions, by using 
either naturally occurring or exogenously added 
stable isotopes as tracers. 
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Persistence of Native-Like 

Topology in a Denatured 


Protein in 8 M Urea 

David Shortle* and Michael S. Ackerman 

Experimental methods have demonstrated that when a protein unfolds, not all 
of its structure is lost. Here we report measurement of residual dipolar couplings 
in denatured forms of the small protein staphylococcal nuclease oriented in 
strained polyacrylamide gels. A highly significant correlation among the dipolar 
couplings for individual residues suggests that a native-like spatial positioning 
and orientation of chain segments (topology) persists to concentrations of at 
least 8 molar urea. These data demonstrate that long-range ordering can occur 
well before a folding protein attains a compact conformation, a conclusion not 
anticipated by any of the standard models of protein folding. 

In recent years, attention has turned to struc- 
tural characterization of proteins whose na- 
tive state has broken down in a major con- 
formational transition termed unfolding or 
denaturation. When nuclear magnetic reso-
nance (NMR) data for several small proteins 
(1, 2) is combined with hydrodynamic and 
small-angle x-ray scattering data, the picture 
emerges that protein chains are relatively 
compact under mildly denaturing conditions, 
forming intermediates sometimes referred to 
as molten globules. As conditions are made 
less favorable for structure formation, most 
commonly by adding the chemical denatur- 
ants urea or guanidine hydrochloride, the de- 
natured state gradually loses its residual 
structure and increases in size (3). At the 
highest concentrations of denaturants, the en- 
semble of conformations is expected to con- 
verge toward those of a statistical random 
coil. 

One protein whose denatured states have 
been extensively studied is staphylococcal 
nuclease, a small a+@protein of 149 amino 
acids that lacks disulfide bonds or structural 
cofactors. Its relatively low stability allows 
the folded state to be broken down by a 
variety of perturbations. In the presence of 5 
M urea, small-angle x-ray scattering has 
shown that the chain expands to a radius of 
gyration of almost 35 A, more than twice the 
native state value of 16 A (4). Nuclease can 
also be denatured by removing a few amino 
acid residues from both ends of the chain. 
The A131A fragment system, consisting of 
residues 10 to 140, refolds only in the pres- 
ence of tight-binding ligands (5). In buffer at 
32"C, it forms a somewhat expanded dena- 
tured state, with a radius of gyration approx- 
imately 1.3 to 1.5 times that of the folded 
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state. A de novo structure determination of 
A1 3 1A using paramagnetic relaxation from 
14 extrinsic spin labels revealed that many 
features of the folded arrangement of seg- 
ment positions and orientations persist in this 
model denatured state (6). Application of this 
same method to a less structured form of 
nuclease, the low-salt, acid-denatured form, 
failed because the measured distance re-
straints were insufficient to constrain the en- 
semble of allowed conformations (7). 

An alternate NMR approach to structure 
determination involves imposing a slight orien- 
tation on a macromolecule in solution by forc- 
ing it to tumble in an asymmetric environment 
(8).The small resulting alignment leads to in- 
complete cancellation of the dipolar coupling 
between magnetic nuclei close in space. The 
residual dipolar coupling D, contains infor- 
mation on the relative orientation of the vector 
between nuclei A and B with respect to one 
unique molecular axis determined by the mo- 
lecular alignment tensor. Alternatively, the in- 
formation can be interpreted in terms of angular 
relations between pairs of bond vectors that are 
independent of the intervening distance (9,lO). 
With information from residual dipolar cou-
plings alone, relatively high-resolution struc- 
tures of the backbone can be calculated (11). 
Although physical theory suggests there would 
be complexities in converting dipolar couplings 
measured in a denatured protein into sets of 
orientational restraints (12), this approach is 
especially attractive because the structural in- 
formation is distance independent. 

To orient the denatured fragment A131A 
of staphylococcal nuclease, we used strained 
polyacrylamide gels (13, 14). After diffusing 
a concentrated solution of protein into a gel 
cylinder and sliding it to the bottom of an 
NMR tube, the gel cavities were distorted 
from their initial spherical symmetry to ellip- 
soidal symmetries by mechanical compres- 
sion (15). Given the chemical inertness of 
polyacrylamide, it is assumed that proteins 
interact with the gel matrix only through 
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