
pressure affects the phonon spectrum essen- 
tially by increasing all phonon frequencies, 
we can explain the decrease in Tc observed in 
many superconductors on compression, as 
has been done recently for MgB, (10, 29). 

That T, in boron increases substantially 
with pressure may be due to one of the fol- 
lowing: (i) The factor q = N(O)(P) may 
increase with pressure in B, thus suppressing 
the effect of increasing (w2). The Hopfield 
parameter, q,may also contribute to the in- 
crease in T, if the character of the conduction 
electrons also changes under pressure, as in 
s-d transfer. (ii) The (0') factor may actually 
decrease with pressure if the phonon modes 
responsible for electron-phonon coupling 
soften under pressure. (iii) The parameter k* 
decreases on compression, which would be 
related to pressure-induced additional screen- 
ing of the electron-electron interaction. Of 
these, the first and third options are possibil- 
ities: Both may be effective if B is approach- 
ing a covalent instability (with -q increasing), 
as discussed by Allen and Dynes (30); or it 
transforms to a compensated metal, as in the 
cases discussed by &chardson and Ashcroft 
(31). A similar increase in critical tempera- 
ture (dTc/dP = 0.05 WGPa) is observed in 
metallic S after transforming to the 0-Po 
structure at 160 GPa (32), suggesting that the 
mechanism could be related. 

We have found superconductivity in B at 
pressures above 160 GPa. The pressure of 
metallization is in the general range of (but 
somewhat lower than) theory, which predict- 
ed that the transition would be accompanied 
by the loss of covalent bonding to form a 
dense nonicosahedral structure (12). The 
magnitude of Tc appears to be consistent with 
such a transition and with an electron-cou- 
pling origin for the superconductivity. This 
work extends the range of electrical conduc- 
tivity measurements to a record value of 250 
GPa. These observations should stimulate 
theoretical calculations of superconductivity 
in elemental B and related low-Z substances. 
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Observation of Chaos-Assisted 

Tunneling Between Islands of 


Stability 

Daniel A. Steck, Windell H. Oskay, Mark C. Raizen* 

We report the direct observation of quantum dynamical tunneling of atoms 
between separated momentum regions in phase space. We study how the 
tunneling oscillations are affected as a quantum symmetry is broken and as the 
initial atomic state is changed. We also provide evidence that the tunneling rate 
is greatly enhanced by the presence o f  chaos in the classical dynamics. This 
tunneling phenomenon represents a dramatic manifestation o f  underlying clas- 
sical chaos in  a quantum system. 

Quantum-mechanical systems can display 
very different behavior from their classical 
counterparts. In particular, quantum effects 
suppress classical chaotic behavior, where 
simple deterministic systems exhibit compli- 
cated and seemingly random dynamics (I). 
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Nevertheless, aspects of quantum behavior 
can often be understood in terms of the pres- 
ence or absence of chaos in the classical limit. 
In this report, we focus on quantum transport 
in a mixed system, where the classical dy- 
namics are complicated by the coexistence of 
chaotic and stable behavior. We study quan- 
tum tunneling between two stable regions 
(referred to as nonlinear resonances or islands 
of stability) in the classical phase space. The 
classical transport between these islands is 
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R E P O R T S  

forbidden by dynamical "barriers" in phase 
space. In contrast, quantum tunneling can 
couple the two islands so that a wave packet 
oscillates coherently between the two sym- 
metry-related stable regions (2-14). 

"Dynamical tunneling," where the classi- 
cal transport is forbidden because of the sys- 
tem dynamics and not a potential barrier, was 
originally introduced in the context of a two- 
dimensional, time-independent potential (2): 
Subsequently, it was found that the presence 
of chaos could markedly enhance the tunnel- 
ing rate in a driven, double-well potential (3), 
and the role of a discrete symmetry in this 
system was highlighted in the tunneling pro- 
cess (4). In addition to symmetry, the pres- 
ence of regular islands is important for pro- 
ducing coherent tunneling, because the is- 
lands cause localization of the Floquet states 
(5), which are the analogs of energy eigen- 
states in time-periodic quantum systems (I). 
Thus, dynamical tunneling between islands 
of stability is analogous to tunneling in the 
simple double-well potential, where the lo- 
calized eigenstates split into a symmetric1 
antisymmetric pair, and the tunneling can be 
understood in terms of the dephasing of this 
nearly degenerate Floquet-state doublet. It 
was found that the tunneling rate is correlated 
with the degree of overlap of the tunneling 
states with the chaotic region, again pointing 
to the role of the chaotic sea in assisting the 
tunneling transport (6). The possible en-
hancement of the tunneling rate because of 
the presence of the chaotic region was under- 
stood in terms of a three-level process, where 
the tunneling doublet interacts with a third 
state associated with the chaotic region. The 
term "chaos-assisted tunneling" was intro-
duced (7, 8) to distinguish this process from 
ordinary dynamical tunneling, which is a 
two-state process. Chaos-assisted tunneling 
has also been explained in terms of indirect 
paths, which are multiple-step transitions that 
traverse the chaotic region, as opposed to 
direct paths, which tunnel in a single step and 
are responsible for regular dynamical tunnel- 
ing (9). Because of these coexisting direct 
and indirect mechanisms, the presence of the 
chaotic region produces large fluctuations in 
the tunneling rate as the system parameters 
vary, sometimes increasing the tunneling rate 
by orders of magnitude. 

Previous experimental work on dynamical 
and chaos-assisted tunneling has mainly fo- 
cused on wave analogies to these effects. 
Chaos-assisted tunneling has been studied in 
microwave billiards, where the enhancement 
of mode doublet splittings due to classical 
chaos has been detected spectroscopically 
(15). The Shnirelman peak in the level spac- 
ing distribution is a similar statistical signa- 
ture of dynamical tunneling (16) and has 
been observed in acoustic resonator (1 7) and 
microwave cavity experiments (18). Finally, 

another recent atom-optics experiment has 
examined coherent tunneling in a double-well 
optical lattice potential (19, 20). 

Our experiment studies the motion of cold 
cesium atoms in an amplitude-modulated 
standing wave of light. Because the light is 
detuned far from the D2 line (50 GHz, or lo4 
natural linewidths, to the red of the F = 3 + 
F' transition, where F is the atomic hyperfine 
quantum number), the internal dynamics of 
the atom can be adiabatically eliminated (21, 
22). The atomic center-of-mass Hamiltonian 
can then be written in scaled units as 

where x and p are the canonical position and 
momentum coordinates, respectively, t is 
time, and a is given by (8w,T21h) V, [V, is 
the amplitude of the ac Stark shift corre-
sponding to the time-averaged laser intensity, 
T is the period of the temporal modulation, h 
is the reduced Planck constant, and w, is the 
recoil frequency, which has the numerical 
value 2.rr X 2.07 lcHz for this experiment); 
more details on the unit scaling can be found 
in (22). The quantum description of this sys- 
tem is governed by one additional parameter, 
the effective Planck constant k = 8wrT, so 
that the scaled coordinate operators satisfy [x, 
p] = ik (note, however, that for the experi- 
mental data we report momentum in units of 
double photon recoils, 2hkL, which is equiv- 
alent to the scaled momentum expressed in 
multiples of k) .  The time-dependent potential 
in this system can be decomposed into a sum 
of three unmodulated cosine terms (23). One 
of these terms is stationary, whereas the other 
two move with velocity 2 IT, so that in the 
limit of vanishing a,  the phase space of this 
system has three primary resonances, two of 
which are symmetric partners about thep = 0 
axis. The value of a used in the experiment 
was 10.5 5 5%. At this large value of a,the 
central island has mostly vanished, leaving a 
large chaotic region surrounding the two 
symmetry-related islands (Fig. 1, A and B). 
To study chaos-assisted tunneling, we pre- 
pared the atoms in one of the resonances and 
observed the atoms coherently oscillate be- 
tween the two islands by monitoring the evo- 
lution of the atomic momentum distribution. 
The possibility of experimentally observing 
chaos-assisted tunneling in this system has 
been a subject of recent discussion (10-12), 
and the tunneling and band structure in this 
system were recently treated in an extensive 
numerical study (10). 

The basic experimental apparatus has 
been described in detail in (22), although we 
have made several major improvements, as 
we now describe. To prepare the initial atom- 
ic state, we first cooled and trapped lo6 ce- 
sium atoms from the background vapor in a 
standard six-beam magneto-optic trap 
(MOT), at a temperature of 10 pK (corre- 

sponding to a Gaussian momentum distribu- 
tion with u,Ihk, = 4). The atoms are then 
further cooled and stored for 300 ms in a 
three-dimensional, far detuned, linearly po- 
larized optical lattice similar to that of (24). 
After adiabatic release from the lattice, the 
atoms achieve a temperature of 400 nK (up/ 
hk, = 0.7). The atoms are then optically 
pumped to the F = 4, rn = 0 magnetic 
sublevel, resulting in a temperature of 3 pK 
(u lhk, = 2). The atomic orientation is main- 
P


tained with a 0.3-G bias field. A velocity- 
selective, stimulated Raman pulse on the 9.2- 
GHz clock transition (which is insensitive to 
Zeeman shifts to first order) "tags" a narrow 
velocity slice (of less than 1% of the atoms) 
into the F = 3, m = 0 sublevel near p = 0. 
The Raman fields are generated with a setup 
similar to that in (25), and the 800-ps square 
temporal pulse yields a momentum slice with 
a half-width at half-maximum of 0.03 X 
2hkL. The remaining atoms are then removed 
by applying low-intensity, circularly polar- 
ized light resonant on the F = 4 +F' = 5 
cycling transition for 800 ps. 

At this point, the atoms have been pre- 
pared in a very narrow distribution about p = 
0, but they are not localized in position on the 
scale of the standing-wave period. A one-
dimensional optical lattice is ramped on adi- 
abatically so that the atoms localize in the 
potential wells. The lattice is then suddenly 
spatially shifted by 114 of the lattice period 
(in several hundred ns) with an electrooptic 
modulator placed before the standing-wave 
retroreflector. After 6 ps of evolution in the 
lattice, the atoms return to the centers of the 
potential wells, acquiring kinetic energy in 
the meantime. The resulting Gaussian mo-
mentum profile is peaked at 4.1 X 2hkL, with 
a width up = 1.1 X 2hkL. This state prepa- 
ration procedure produces a localized atomic 
wave packet centered on one of the islands of 
stability (Fig. 1, A and B). The three red 
ellipses are the 50% contours of a classical 
distribution with the same position and mo- 
mentum marginal distributions as the Wigner 
function. (The Wigner function has addition- 
al structures that reflect the coherences of the 
initial state.) The initial condition shown does 
not reflect a slight distortion due to anhar- 
monic motion in the lattice. The importance 
of the extremely narrow velocity selection is 
twofold. First, the atomic distribution must be 
selected to be well within one photon recoil 
of zero momentum, so that all the atoms load 
into the lowest energy band of the lattice. 
Then, in the deep-well limit, the atomic dis- 
tribution becomes minimum-uncertainty 
Gaussian (modulo the standing-wave period). 
Second, only atoms whose momenta are 
nearly a multiple of hk, will tunnel, as we 
discuss further below. As the lattice only 
imparts momentum in multiples of 2hkL, the 
ramping and shifting of the lattice result in a 
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distribution with an overall Gaussian enve- 
lope but concentrated in narrow momentum 
slices around 42%) for integer n. This 
structure indicates coherence of the wave 
packet over multiple periods of the optical 
lattice. 

After the state preparation, the atoms are 
subjected to the time-dependent interaction 
described by Eq. 1, with a modulation period 
of T = 20 ps (k = 2.08). The atoms are then 
allowed to expand freely for 20 ms, after 
which the optical molasses is turned on, 
freezing the atoms in place. The fluorescence 
of the atoms is collected on a charge-coupled 
device camera. As a result of the long free- 
drift time, this process yields a measurement 
of the atomic momentum distribution. Be- 
cause of the relatively large size (a, = 0.15 
mm) of the initial atomic cloud, the individ- 
ual momentum slices are not resolved in the 
measured distributions. To compensate for 
the loss in signal that results from discarding 
most of the atoms, we averaged the data 
presented in this report over 20 iterations, 
except for the distributions in Fig. 1D (100 
iterations) and Fig. 5A (19 iterations). The 
momentum distributions are sampled every 
two modulation periods (40 ps) for all the 
data presented here except for the high tem- 
poral resolution data (Fig. 5A). 

The measured evolution of the momentum 
distribution (Fig. 1C) shows clear tunneling 

R E P O R T S  

oscillations between the initial momentum 
peak and its symmetric partner, which is lo- 
cated 8 x 2hkL away in momentum. Four 
damped oscillations are apparent in this mea- 
surement out to 80 modulation periods (1600 
ps), and after this time the oscillations have 
completely damped away. Four of the mo- 
mentum distributions near the beginning of 
the evolution are shown in more detail in Fig. 
1D. During the first oscillation, nearly half of 
the atoms appear in the secondary peak (26). 

As mentioned above, only atoms with mo- 
mentum of approximately a multiple of a 
photon recoil momentum (or scaled momen- 
tum of nearly a multiple of k/2) will tunnel. 
This is clear from the requirement of symme- 
try for tunneling to occur, because only states 
that involve these special velocity classes are 
coupled to their symmetric reflections (about 
the p = 0 axis) by two-photon transitions. 
This is essentially the same condition re- 
quired for Bragg scattering (27-29). The bro- 
ken symmetry resulting from selecting other 
velocity classes is formally equivalent to a 
broken time-reversal symmetry (30) and sup- 
presses the formation of symmetriclantisym- 
metric doublets (30, 31). We can study this 
broken symmetry directly by varying the Ra- 
man detuning of the velocity-selection pulse 
from the optimum value and monitoring the 
effect on the evolution of the average mo- 
mentum (p) (Fig. 2). The case with the stron- 

Fig. 1. Experimental obsewation of tunneling oscillations. (A) The classical phase space for the 
experimental parameters. The islands of stability involved in the tunneling appear as two blue 
regions inside the green chaotic region and are symmetric reflections about the p = 0 axis. A 
schematic of the initial atomic state is superimposed on the upper island in red, appearing as three 
narrow ellipses. (B) Magnified view of the upper stability island and the initial condition. (C) The 
measured evolution of the momentum distribution in time, showing several coherent oscillations 
between the two islands, which are separated in momentum by 8 x Zfik,. In this plot, the 
distribution is sampled every 40 ps (every two modulation periods). (D) Detailed view of the first 
four highlighted distributions in (C), where it is clear that a substantial fraction of the atoms tunnel 
to the other island (2). 

gest momentum oscillations corresponds to 
the data shown in Fig. 1, C and D. Also 
shown are measurements with Raman detun- 
ings corresponding to momentum offsets of 
0.05 X 2hkL and 0.12 X 2%. In the former 
case, the oscillations are partially suppressed, 
and for the larger detuning, the tunneling 
oscillations have mostly disappeared. Be- 
cause of this sensitivity to the initial momen- 
tum, the tunneling oscillations are not visible 
without subrecoil velocity selection, as we 
have experimentally verified (32). Addition- 
ally, this effect is largely responsible for the 
damping of the tunneling oscillations that we 
observe, because the states near the edge of 
the Raman velocity selection profile will not 
tunnel as efficiently as the "resonant" states 
at the profile center. The various states will 
also tunnel at slightly different rates, leading 
to dephasing of the oscillations, similar to 
broadened excitation of a two-level system. 
Hence, narrower velocity selection should 
lead to longer damping times, although noise 
and decoherence sources may also limit the 
coherence of the oscillations. 

We also verified that the tunneling is 
strongest if the wave packet is initially cen- 
tered on the island of stability. As the initial 
wave packet is moving, we can displace the 
initial condition in the x direction in phase 
space simply by inserting a short delay time 
where the standing wave is off before begin- 
ning the driven pendulum interaction. The 
oscillations in (p) were compared for delay 
times of 0, 3.8,7.6, and 15.1 ps, correspond- 
ing to displacements of 0, 114, 112, and 1 
periods of the optical potential away from the 
island center (Fig. 3). For the 114-period dis- 
placement, the oscillations are suppressed, 
but still present. The initial wave packet in 
this case only weakly excites the tunneling 
Floquet states and mostly populates the states 
in the chaotic sea (resulting in diffision 
throughout the sea) and states in the outer 
stability band (resulting in trapping of the 

I 
O o  

I 
400 800 1200 1600 

time Ws) 

Fig. 2. Comparison of tunneling oscillations for 
different Raman detunins. The strongest oscil- 
lations obsewed (0) coGespond to &man ve- 
locity selection at p = 0. The other two cases 
are for velocity selection at p = 0.05 X Zfik, 
(.), where the oscillations are partially sup- 
pressed, and p = 0.12 X Zfik, (A), where the 
oscillations are almost completely suppressed. 
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wave packet at the high momenta). For the 
ID-period displacement, the oscillations are 
completely suppressed, because the wave 
packet is almost entirely trapped in the outer 
stable region. For the longest delay, the wave 
packet returns to the island center, and the 
tunneling oscillations are once again present. 
The amplitude of the oscillations is somewhat 
suppressed in this case, however, because the 
free evolution stretches the wave packet, and 
hence the tunneling states are not as eficient- 
ly populated. 

So far, we have discussed the tunneling 
oscillations and how they are affected by a 
broken quantum symmetry and the initial lo- 
cation in phase space, which are important 
characteristics of dynamical tunneling. To 
demonstrate chaos-assisted tunneling re- 
quires further evidence, and an important test 
is to compare the tunneling in the time-de- 
pendent potential with tunneling in the ab- 

"b I 
4M 800 1200 1600 

time us) 

Fig. 3. Comparison of chaos-assisted tunneling 
for different free-drift times before the stand- 
ing-wave interaction. The strongest oscillations 
occur for zero drift time (a) ,  where the initial 
wave packet is centered on the island of sta- 
bility as in Fig. 1A. The oscillations are substan- 
tially suppressed for a 3.8-ps drift time m, 
which displaces the initial wave packet center 
by 114 of a period of the standing wave. Tun- 
neling oscillations are completely suppressed 
for a 7.6-ps drift time (A), corresponding to a 
112-period offset of the initial wave packet. For 
a 15.1-ks drift time (O), the wave packet is 
again centered on the island, and coherent 
oscillations are restored. 

I 
400 800 1200 two 

time us) 

Fig. 4. Comparison of chaos-assisted tunnel- 
ing oscillations ( a )  to transport in the cor- 
responding quantum pendulum (W). No tun- 
neling oscillations are observed in the pen- 
dulum case over the interaction times stud- 
ied in the experiment. 

sence of chaos. A sensible integrable coun- 
terpart of the amplitude-modulated standing- 
wave system arises by simply considering the 
time-averaged potential, resulting in the 
quantum pendulum. Because the initial dis- 
tribution is centered outside the separatrix, 
classical transport across the p = 0 axis is 
also forbidden in this system. However, there 
is a well-known dynamical tunneling mech- 
anism in the pendulum, high-order Bragg 
scattering (27-29), which is a manifestation 
of quantum above-barrier reflection (33). As 
the wave packet is initially peaked near 4 X 
2?ikL, the dominant transport process is 
eighth-order Bragg scattering. For the param- 
eters in the experiment, the calculated eighth- 
order Bragg period is around 1 s, which is 
much longer than the 4 0 0 - ~ s  tunneling peri- 
od in the (chaotic) driven pendulum. We 
compared the evolution of (p) for the driven 
pendulum to the transport in the undriven 
pendulum (Fig. 4), and indeed no coherent 
oscillations are observed in the undriven case 
during the interaction times measured in the 
experiment. Hence, we observe that the clas- 
sical chaos enhances the tunneling rate for 
these experimental parameters, in the sense 
that the tunneling in the presence of classical 
chaos occurs at a substantially greater rate 
than the tunneling in the integrable case. 

Although it is customary to study time- 
periodic systems in a stroboscopic sense, sam- 
pling only at a particular phase of the modula- 
tion as we have done up to this point, it is also 
interesting to study the continuous tunneling 
dynamics in our system. We studied the evolu- 
tion of the momentum distribution during the 
first half of the first tunneling period, sampling 

the system at 1-FS intervals, or 20 times per 
modulation period (Fig. 5A). The most obvious 
aspect of this data is that the initial and second- 
ary (tunneled) peaks exhibit complementary but 
opposite momentum oscillations at the modu- 
lation frequency. These oscillations can be ex- 
plained in terms of the continuous motion of the 
corresponding islands in phase space (Fig. 5B). 
As the two islands have opposite momentum, 
they move in opposite directions but oscillate in 
momentum because of repulsion by the rem- 
nants of the center island (34). In this 
picture, the islands constitute a pair of non- 
intersecting "flux tubes" (14) that remain 
confined in separated momentum intervals. 
The tunneling atoms can be viewed as a 
realization of a dynamical Schrodinger cat, 
because they represent a coherent superpo- 
sition of two states separated in momentum 
space, each one corresponding to motion in 
a classical island of stability. 

The evolution in Fig. 5A also shows 
other interesting transport behavior. There 
is another oscillation that proceeds more 
quickly than the tunneling, which appears 
as population oscillating between the initial 
peak and the chaotic region near p = 0. 
This can be seen most clearly as an en- 
hanced population near zero momentum 
during the third, fifth, and seventh modu- 
lation periods. This process also points to 
chaos-assisted tunneling, because it sug- 
gests that a third (chaotic) state is involved 
in the transport between the two islands. 

Note added in proof After the submission 
of this paper, we became aware of an exper- 
iment reporting dynamical tunneling in a sim- 
ilar setting (35). 

time (ps) 

Fig. 5. High temporal resolution tunneling measurement. (A) Evolution of the momentum 
distribution during the first tunneling oscillation, sampled 20 times per modulation period. The two 
peaks show complementary oscillations at the modulation frequency in addition to the slower 
tunneling oscillation. Some population also appears in the chaotic region between the islands, 
especially during the third, fifth, and seventh modulation periods (34). (B) Phase space plots (axes 
as in Fig. 1A) at four different phases of the lattice modulation, showing the classical origin of the 
fast oscillations in (A). At the start of the modulation period, the islands of stability are maximally 
separated but move inward as they drift away from x = 0 and return to their initial momenta by 
the end of the modulation period. The two islands always remain separated in momentum and do 
not cross the p = 0 axis (34). 
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Deterministic Delivery of a 

Single Atom 


Stefan Kuhr,* Wolfgang Alt, Dominik Schrader, Martin Miiller, 

Victor Gomer, Dieter Meschede 


We report the realization of a deterministic source of single atoms. A standing-
wave dipole trap is loaded with one or any desired number of cold cesium atoms 
from a magneto-optical trap. By controlling the motion of the standing wave, 
we adiabatically transport the atom with submicrometer precision over mac- 
roscopic distances on the order of a centimeter. The displaced atom is observed 
directly in the dipole trap by fluorescence detection. The trapping field can also 
be accelerated to eject a single atom into free flight with well-defined velocities. 

The manipulation of individual atomic parti- 
cles is a key factor in the quantum engineer- 
ing of microscopic systems. These techniques 
require full control of all physical degrees of 
freedom with long coherence times. In com- 
parison to well-established single-ion trap- 
ping methods (1-4), a similar level of control 
of neutral atoms has yet to be achieved be- 
cause of their weaker interactions with exter- 
nal electromagnetic fields. 

Thermal sources of neutral atoms, such 
as atomic beams, provide a flux of uncor- 
related atoms with random arrival times. 
However, there is great interest in a source 
that would deliver a desired number of cold 
atoms at a time set by the experimentalist. 
Micromaser experiments, for example, use 
a dilute atomic beam, which results in a 
mean number of atoms inside the resonator 
that is much less than 1. Poissonian statis- 
tics, however, dictate that the probability of 
having more than one atom inside the res- 
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onator simultaneously does not vanish; this 
can easily destroy the ideal one-atom-maser 
operation (5). Another possible application 
is the controlled generation of single opti- 
cal photons triggered by atoms entering a 
resonator with mirrors of ultrahigh reflec- 
tivity (a "high-finesse" resonator) one by 
one (6, 7). Other experiments require the 
placement of more than one atom into the 
region of interest. Quantum logic gates ( 8 )  
can be implemented by entangling (2, 4, 9, 
10) neutral atoms through their simulta- 
neous coupling to the optical field of a 
resonator (11, 12). This is possible with the 
current technology, but in recent experi-
ments (13, 14) atoms enter the cavity in a 
random way, rendering it impossible to 
have a certain small number of atoms on 
demand. 

In comparison, our technique guarantees 
control of the position of individual neutral 
atoms with submicrometer precision. A 
standing-wave dipole trap is used to store 
any desired small number of cold atoms in 
a laser field interference pattern, localizing 
the trapped atoms to better than half of the 
optical wavelength. Changing the laser pa- 
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rameters moves this interference pattern 
along with the trapped atom in a prescribed 
way. Whereas the transportation of atomic 
clouds has recently been realized using 
magnetic potentials (15), here we demon- 
strate the controlled transport of a single 
atom. 

Optical dipole traps (16-21) are based 
on the interaction between an electric com- 
ponent of the light field E and the induced 
atomic electric dipole moment d, which is 
proportional to E. The interaction energy 
U = -(d . E)/2 is proportional to the local 
light intensity. If the laser frequency is 
smaller than the atomic resonance frequen- 
cy, the atom is attracted to the region of 
maximum intensity. Thus, the simplest op- 
tical dipole trap is a focused laser beam. 
Tuning the laser frequency far away from 
all atomic resonances substantially reduces 
the photon scattering rate, and the atom is 
trapped in a nearly conservative potential. 
In contrast, a magneto-optical trap (MOT ) 
(22) provides dissipative forces and serves 
as a convenient source of single cold atoms 
(23, 24). Atoms captured from the back- 
ground gas interact with the near-resonant 
light field of the MOT and scatter photons 
from the laser beams. This fluorescence 
signal monitors the number of trapped at- 
oms in real time (Fig. 1). These atoms can 
be transferred into a dipole trap superim- 
posed on the MOT without any loss. thus 
allowing us to experiment with a predeter- 
mined number of atoms (24). 

Our dipole trap consists of two counter- 
propagating laser beams with equal inten- 
sities and optical frequencies v, and v,. 
producing a position-dependent dipole po- 
tential U(z, t )  = Uo cos2[n(Avt - 2z/X)], 
where Uo is the local trap depth, i is the 
position of the atoms, X = 1064 nm is the 
optical wavelength (A = clv, ;= clv2, where 
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