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The brain frequently needs t o  store information for short periods. In vision, this 
means that the perceptual correlate of a stimulus has t o  be maintained tem- 
porally once the stimulus has been removed from the visual scene. However, 
it is not known how the visual system transfers sensory information into a 
memory component. Here, we identify a neural correlate of working memory 
in  the monkey primary visual cortex (V l ) .We propose that this component may 
link sensory activity w i th  memory activity. 

We trained monkeys (Macaca mulatta) to 
perform a delayed-response task in which the 
animals had to remember briefly the location 
of a figure after it had been removed from the 
visual scene (1). The animals fixated on a 
small central red dot on a computer screen 
(Fig. 1). After a 300-ms fixation, a motion- 
defined figure appeared very briefly (28 ms) 
at one of three locations (Fig. 1). After this 
stimulus had been presented, the animal had 
to continue fixating the central spot until it 
was switched off (Fig. lA, "Cue time"). The 
removal of the fixation point indicated to the 
animal to make a saccade toward the position 
where the figure had been presented. The 
animal was rewarded only when fixation was 
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maintained until the cue, and when the sac- 
cade was made to the correct position. The 
latency of the cue time was varied between 0 
and 2000 ms after stimulus onset. Thus, while 
fixating, the animal had to remember the 
location of the briefly presented figure during 
a period of up to about 2 s. Detection of the 
figure was high and declined for longer delay 
periods (Fig. 2A), indicating that the task 
requires short-term memory processes. 

During the delayed-response task, multi- 
unit activity of V1 neurons was recorded in 
two monkeys (2). The display was filled with 
random dots. Stimulus onset thus evoked 
neural responses for "figure" [when the fig- 
ure dots were overlying the V1 receptive 
fields (RFs)] as well as for "ground" motion 
(when the figure was presented elsewhere 
and background dots covered the RF) (Fig. 
1C). We arranged the directions of motion 
such that, on average, the motion stimuli on 
the RF were identical for the "figure" and 
"ground" situations (3, 4). 

The initial responses to figure and ground 
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motion were identical up to about 70 ms after 
stimulus onset (Fig. 2B). At longer latencies, 
however, the response to figure motion was 
typically stronger than to background motion. 
This late enhancement of the sensory re-
sponse-contextual modulation-correlates 
closely with the perception of the figure (4-
6) . Contextual modulation in V1 depends on 
feedback from higher visual areas (7-9), 
which implies that it is a specific correlate of 
recurrent processing. What happens to this 
modulation once the stimulus is no longer 
present, but has to be remembered? 

During the delay period, the figure re-
sponse remained stronger than the ground 
response (Fig. 2B) (P < for all delay 
periods). Thus, contextual modulation contin- 
ues after the figure is removed from the 
visual field. In a control experiment, we ob- 
served the same phenomenon when a static, 
rather than a moving, stimulus was used in 
the same delayed-response task. Here, a static 
texture with an orientation-defined figure 
(10) was presented for 100 ms and followed 
by a mask containing a different texture, 
where the figure was no longer visible. Also 
in this experiment, contextual modulation 
continued during the whole period (900 ms) 
that the animal had to remember the figure 
location (Fig. 2E). Thus, the persistence of 
contextual modulation is not due to any pe- 
culiarity of the motion stimulus. 

We calculated the strength of contextual 
modulation (3) for the first 250 ms after 
stimulus onset as an indication of the initial 
segregation strength of the figure from 
ground, and for the last 250 ms before cue 
time as an indication of the signal strength 
available for responding in the memory task. 
In the first part of the response, the strength 
of contextual modulation was similar for all 
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Fig. 2. Behavioral performance and neural responses in a delayed-response period after stimulus onset for each individual electrode is plotted against 
task with random dot motion-defined (A to  D) and texture orientation- the average modulation strength of the 250-ms period before cue time. A 
defined (E) figure-ground stimuli. (A) The percentage of correct trials for the linear regression curve is fitted through the data points. (D) Slopes of the 
different delay periods. (B) Neuronal responses (population average of all regression curves in (C) for the different delay periods. Data of the O-ms-
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tion is indicated by the shaded area. Dotted lines above the figure responses figure-ground-defined texture. The first peak corresponds to  the figure 
indicate the SEM. (C) Average modulation strength for the first 250-ms onset, and the second peak t o  figure offsetlmask onset. Shading as in (B). 
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conditions. However, the strength of contex-
tual modulation at subsequent stages de-
creased with increasing delay length. To 
quantify the decline in modulation strength 
with increasing delay length, we plotted the 
initial modulation strength of the first 250 ms 
after stimulus onset against the modulation 
strength of the last 250 ms before cue time for 
each individual recording unit (Fig. 2C). For 
the 1000- and 2000-ms delay periods, there 
was a significant decline in modulation (P < 

We then fitted a linear regression line 
through these data points for each delayed-
response period. The slope declined for long-
er delay periods (Fig. 2D). This indicates that 
the strength of contextual modulation is re-
lated to the delay period, where modulation 
becomes weaker for longer delays. 

To establish a direct correlation between 
the persistence of modulation and memory 
performance, we analyzed the data according 
to the report of the animal, i.e., correct and 
incorrect responses. In correct trials, the ani-
mal made a saccade toward the figure loca-
tion within 500 ms after cue time. In incorrect 
trials, the animal failed to respond correctly 
within this period. We then calculated the 
strength of contextual modulation for correct 
and incorrect responses separately. Contextu-
al modulation was present during the first 
250-ms period after stimulus onset for both 
the correct and incorrect trials (Fig. 3). Sub-
sequently, the average strength of contextual 
modulation decreased in the later parts of the 
delay period. The decrease of modulation 
was stronger for incorrect trials, and contex-
tual modulation for the incorrect trials disap-
peared completely in the late part of the delay 
period (Fig. 3, B and D), whereas modulation 
for the correct trials continued (Fig. 3, A and 
C). Analysis of individual recording sites 
(Fig. 3, E and F) showed that the strength of 
the figure-ground signal during the first 250 
ms after stimulus onset was similar for the 
correct and incorrect trails ( P  > 0.1 for both 
delay periods), but that most electrodes 
showed stronger modulation at the final 250 
ms before cue time for correct trials com-
pared with incorrect trials ( P  < for both 
delay periods). Dividing the average modula-
tion strength of the last 250 ms before cue 
time by the modulation strength of the first 
250-ms period after stimulus onset gives the 
relative degree of modulation persistence 
during the delay period (Fig. 3, G and H). 
This persistence is much weaker (and in fact 
negative) for incorrect than for correct trials 
( P  < 0.005 for both delay periods). 

Thus, for correct trials as well as for 
incorrect trials, the figure is equally well 
segregated from the ground, as indicated 
by the presence of contextual modulation in 
the first 250 ms after stimulus onset. How-
ever, during the delay period, modulation 
continues for correct trials and disappears 
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Fig. 3. Neurophysiologicalresponses and modulation strength for the 1000- and 2000-ms-delay 
period sorted according to behavioral result. (A to D) The population average neural activity for 
figure and ground for correct [(A) and (C)] and incorrect trials [(B) and (D)]. Shading as in Fig. 2. (E 
and F) Modulation strength duringthe given intervalsof each recordingunit for correct trials versus 
incorrecttrials. (C and H) Populationaverage of modulation ratios (modulation strength duringthe 
first 250 ms divided by modulation during the last 250 ms) for correct and incorrect trials. 

completely for incorrect trials. 
Another important feature of working 

memory is that relevant information is active-
ly stored for later use, i.e., the information is 
stored only if necessary (11). To test whether 
the sustained modulation that we observed 
was an active process, we presented a second 
stimulus during the delay period (Fig. 4, A 
and B). The second stimulus appeared 500 
ms after the onset of the first stimulus and 

remained on the screen until the end of the 
trial. The second stimulus could be either 
relevant or irrelevant to the delayed-response 
task. In the figure = target condition, the 
animals had to saccade to the remembered 
position of the first stimulus (as before), and 
the second stimulus was irrelevant. In the 
figure = distractor condition, the animals had 
to remember the position of the second stim-
ulus, and the figure was irrelevant (12). 
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Fig. 4. Experimental setup and figure-ground responses for a 1000-ms delayed-response task where 
the figure was either target or distractor. (A and B) The delayed-response task was as described in 
Fig. 1 except that a second stimulus (circle) was presented 500 ms after the figure onset (square). 
After the offset of the fixation point, animals had to make a saccade toward the figure location in 
the figure = target condition (A) or toward the second stimulus (circle) in the figure = distractor 
condition (arrows in upper right panels). (C and D) The average figure-ground responses for 
figure = target condition (C) and figure = distractor condition (D). Shading as in Fig. 2. (E) Strength 
of modulation for the 250-ms period after figure onset versus strength of modulation for the 
250-ms period before cue time of each recording unit for the figure = target condition (solid 
circles) and for the figure = distractor condition (open circles). (F) Population average of 
modulation ratios (see Fig. 3, C and H) for the figure = target and figure = distractor conditions. 

In both conditions, contextual modula- 
tion was present before the onset of the 
second stimulus (Fig. 4, C to E) (difference 
in modulation strength P > 0.1). The ap- 
pearance of the second stimulus had a 
strong nonspecific effect on the activity of 
the recorded neurons, where the average 
responses to both figure and ground de- 
creased after the onset of the second stim- 
ulus (Fig. 4, C and D). However, a very 
task-specific effect was observed on the 
difference between figure and ground re- 
sponses: Contextual modulation continued 
in trials when the figure was the target, 
whereas it decreased when the figure was 

the distractor (Fig. 4, C and D). Again, we 
quantified the initial (0 to 250 ms) and the 
final (750 to 1000 ms) amount of modula- 
tion for each individual electrode (Fig. 4E), 
and calculated the relative degree of persis- 
tence of modulation during the delay period 
(Fig. 4F). The remaining amount of modu- 
lation is much stronger when the figure is 
relevant to the memory task than when it is 
not (P < 0.0005). These results indicate 
that the continuation of modulation is not a 
passive process but is related to an active 
storage of information needed for the ani- 
mal's goal. 

In the primary visual cortex, neural activ- 

ity related to figure-ground segregation thus 
continues during the delay period in a mem- 
ory guided task (Fig. 2). The persistence of 
figure-ground modulation is stronger when 
the task is performed correctly (Fig. 3) and 
when the figure evoking the modulation is 
relevant to the task (Fig. 4). The continued 
figure-ground signal is accompanied by an 
overall reduction in activity (see Figs. 2 to 4). 
Thus, whereas one mechanism suppresses 
overall activity in V1 during the delay, an- 
other mechanism seems to be able to main- 
tain the difference in figure versus ground 
signals. In that sense, the maintained activity 
is different from delay-period activity record- 
ed in temporal (13) or prefrontal (14) cortex. 
This difference may also explain why in 
functional magnetic resonance imaging stud- 
ies, very little delay activation is found in 
early visual areas (15). 

It is highly unlikely that the maintained 
activity is a neural correlate of visual persis- 
tence, i.e., the lasting visibility of a stimulus 
after its physical disappearance. In humans, 
visual persistence for motion-defined stimuli 
has been shown to last 40 to 130 ms after 
stimulus offset (16, 17). However, our data 
show that contextual modulation is present 
for up to 2 s after the removal of the figure 
(Fig. 2B). Maintained modulation occurs 
even when the display is replaced with a 
different stimulus (Fig. 2E). 

Instead, our results show a strong correla- 
tion between the active and successful storage 
of information about (the location of) the stim- 
ulus and the maintained figure-ground signal. 
Whereas the first part of this activity may 
thus be related to the perceptual experience of 
the figure segregating from ground [see also 
(5, 6)], the later part is more likely related to 
a memory trace of the stimulus (11, 13). We 
therefore propose that contextual modulation 
in the primary visual cortex is a correlate of 
the process that forms a bridge between sen- 
sory activity and working memory. 
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Transcription elongation by RNA polymerase II (RNAPII) is negatively regulated 
by the human factors DRB-sensitivity inducing factor (DSIF) and negative 
elongation factor (NELF). A 66-kilodalton subunit of NELF (NELF-A) shows 
limited sequence similarity to hepatitis delta antigen (HDAg), the viral protein 
required for replication of hepatitis delta virus (HDV). The host RNAPll has been 
implicated in HDV replication, but the detailed mechanism and the role of HDAg 
in this process are not understood. We show that HDAg binds RNAPll directly 
and stimulates transcription by displacing NELF and promoting RNAPll elon- 
gation. These results suggest that HDAg may regulate RNAPll elongation during 
both cellular messenger RNA synthesis and HDV RNA replication. 
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host RNAPII and requires the presence of 
HDAg (9-11). TWO forms of HDAg, HDAg-S 
(195 amino acids long) and HDAg-L (2 14 ami-
no acids long), originate from editing of the 
common mRNA. Both forms bind HDV RVA, 
but have distinct roles in the viral life cycle. 
HDAg-S activates HDV replication, whereas 
HDAg-L, which contains a 19-amino acid 
COOH-terminal extension, inhibits replication 
and directs virion assembly (9-12). Earlier re- 
ports have implicated HDAgs in both activation 
and inhibition of RNAPII transcription (13, 
14), but the nature of this discrepancy and the 
mechanism of HDAg action are unknown. 

To investigate if, and how, HDAgs regu- 
late RNAPII transcription, we examined the 
effect of HDAg on DNA-templated transcrip- 
tion using HeLa nuclear extracts (NE). In the 
presence of DRB, endogenous DSIFNELF 
can repress transcription (Fig. 2A) (4). 
HDAgs reversed this inhibition (HDAg-S 
was more effective than HDAg-L), with little 
effect on basal (-DRB) transcription (Fig. 
2A). This effect required NELF, because NE 
irnrnunodepleted of NELF failed to respond 
to HDAgs (Fig. 2B). These results suggest 
that HDAg stimulates RNAPII transcription 
by counteracting the negative effect of DSIF/ 
NELF. 

Because HDAg does not affect the kinase 
activity of P-TEFb or CTD phosphorylation 
(IS), we sought to determine whether it af- 
fects association of NELF, DSIF, and RNA- 
PI1 under transcription conditions. In NE pre- 
pared from HeLa cells expressing Flag-
NELF-E, antibodies to Flag (anti-Flag) im- 
munoprecipitated the other NELF subunits 
(15), DSIF, and RNAPII (Fig. 3A) (4). Pre- 
incubation of the NE with HDAg-S substan- 
tially reduced the levels of DSIF and RNAPII 
in the precipitate (Fig. 3A), but had little 
effect on DSIF-RNAPII interaction (15). To 
determine the direct target of HDAg, we an- 
alyzed the NE proteins associated with glu- 
tathione S-transferase (GST)-HDAg. Under 
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