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cells per milliliter. Excitation spectra were measured 
in 70% glycerol using an Aminco Series 2 spectroflu- 
orometer equipped with a R928 photomultiplier. The 
excitation monochromator was operated with a 
4-nm slit, and the emission monochromator was 
operated at 875 nm with a 16-nm slit, and protected 
by a Shott RG830 glass filter. 

22. A. Morel, D. Antoine, 1. Phys. Oceanogr. 24, 1652 
(1994). 

23. CO, 	 fixation measurements were performed with 
NAPl isolate diluted to 30 nM BChla concentration, at 
25°C. Aliquots of 2 m l  were labeled by addition of 2 pCi 
of NaH14[C]0, (New England Nuclear) and exposed to 
36 light intensities provided by a quam halogen lamp 
attenuated by a set of neutral density filters. After 
incubation, the sarnples were killed by addition of 30 pl 
of 36% HCI and evaporated to dryness. The sarnples 
were resuspended in 2 ml  of 30 mM Tris buffer (pH 7.7) 
and 15 ml  of scintillation cocktail (Ready Safe, Beck- 
man). The incorporated radioactivity was determined 
using Beckman LS6K-IC scintillation counter, and cor- 
rected for blank and dark counts. 

24. T. Shiba,]. Gen. Appl. Microbiol. 30, 1313 (1984). 
25. Water samples of 50 pl collected from the surface, 

and from depths corresponding to the maximum 
amplitude of 880 nm IRFRR signal were spread on f/2 
agar plates, incubated in darkness for 6 days, and 
then exposed to  ambient light with a 14/10 hours 
daylnight cycle. Small, about 0.5-mm-diameter col- 

onies of gray, green, yellow, and pink color appeared 
within 8 t o  10 days of incubation. Among these, only 
the pink colonies displayed the fluorescence tran- 
sients at 880 nm. Following two to three plate trans- 
fers, the isolates were transferred t o  a liquid f/2 
medium enriched with 0.2 glliter yeast extract and 
0.1 glliter peptone. The BChla accumulation was 
followed by using the IRFRR signal. Grown on a 
shaker under ambient, natural illumination, the pink 
isolates displayed a maximum specific growth rate, 
estimated from BChla accumulation, of about four 
per day. BChla accumulation was observed only dur- 
ing the dark period, and was retarded during the day. 

26. NAPl genomic DNA was isolated from 5.0 m l  of 
culture. Cells were subjected to both physical (re- 
peated freeze-thawing) and enzymatic lysis, and 
the DNA was extracted with phenol chloroform 
and precipitated with 300 mM sodium acetate and 
70% ethanol. Polymerase chain reaction (PCR) was 
performed to  amplify the 165 rDNA using primers 
S-D-Bact-0008-a-S-20 (5'-AGAGTTTGATCCTG-
GCTCAG-3') [R. E. Hicks, R. I. Amann, D. A. Stahl, 
Appl. Environ. Microbiol. 58, 158 (1992)l and S-*- 
Univ-1517-a-A-21 (5'-ACGGCTACCTTGTTAC-
GACTT-3') [W. G. Weisburg, 5. M. Barns, D. A. 
Pelletier, D. J. Lane, 1. Bacteriol. 173, 697 (1991)l. 
PCR products were gel-purified, cloned in the PCR 
II plasmid vector (Invitrogen, Carlsbad, CA) and 
their sequences were determined on an ABI 310 

Nitrogen Fixation by Symbiotic 
and Free-Living Spirochetes 

Spirochetes from termite hindguts and freshwater sediments possessed ho- 
mologs of a nitrogenase gene (nifH) and exhibited nitrogenase activity, a 
previously unrecognized metabolic capability in  spirochetes. Fixation of-15- 
dinitrogen was demonstrated w i th  termite gut Treponema ZAS-9 and free-living 
~ ~ i r o c h a e t aaurantia. Homologs of nifH were also present in  human oral and 
bovine ruminal treponemes. Results implicate spirochetes in  the nitrogen nu- 
tr i t ion of termites, whose food is typically low in  nitrogen, and in  global nitrogen 
cycling. These results also proffer spirochetes as a likely origin of certain nifHs 
observed in  termite guts and other environments that were not previously 
attributable t o  known microbes. 

Termites are important terrestrial decompos- 
ers of Earth's major form of biomass: ligno- 
cellulosic plant material and residues derived 
from it, e.g., humus (I). However, the car- 
bon-rich but typically nitrogen-poor character 
of the termite diet has led many species into 
symbiotic interactions with gut microbes to 
augment their nitrogen economy. These inter- 
actions include the recycling of excretory 
(uric acid) nitrogen and the acquisition of 
new nitrogen through N, fixation (2). In 
wood-feeding termites, whose food may con- 
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tain as little as 0.05% nitrogen (dry weight 
basis), N, fixation can supply up to 60% of 
the nitrogen in termite biomass (3). Unfortu- 
nately, our understanding of N,-fixing mi-
crobes in termites is meager: only a few 
strains have been isolated (Citrobacter freun- 
dii, Pantoea agglomerans, and Desulfovibrio 
spp.), and their contribution to N, fixation in 
situ is questionable (2). ~ndeed,-recent sur- 
veys of the nitrogenase iron-protein encoding 
gene (nIfH) in termite guts implied that the 
diversity of N2-fixing microbes was far great- 
er than that inferred by pure culture isolation 
(4-61, and most of the deduced amino acid 
sequences of NifH differed from those of 
known microbial taxa (7 ) .  

A long-recognized~ and morphologi-
tally distinct component of the termite gut mi- 
crobiota are spirochetes, whose cloned 16s 
rDNA gene sequences group them within the 
genus Treponema (8).Recently, the first pure 

Automated Sequencer (Applied Biosystems, Foster 
City, CA). Sequences were aligned manually t o  165 
rRNA sequence data from the RDP [N. Larsen et dl., 
Nucleic Acids Res. 21, 3021 (1993)] and recent 
GenBank releases using the Genetic Data Environ- 
ment (GDE) multiple sequence editor. A total of 
1366 aligned unambiguous nucleotides were used 
in the analysis. Maximum-likelihood trees were 
constructed using fastDNAml [J. Felsenstein, 1. 
Mol. Evol. 17, 368 (1981)], which uses the gener- 
alized two-parameters model of evolution [H. 
Kishino, M. Hasegawa,]. Mol. Evol. 29, 170 (1989)], 
and using jumbled orders for the addition of taxa 
t o  avoid potential bias introduced by the order of 
sequence addition. Transition/transversion ratios 
were optimized and bootstrap analysis was used to  
provide confidence estimates for phylogenetic tree 
topologies [J. Felsenstein, Evolution 19, 783 
(1985)l. 
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www.sciencemag.org/cgi/content/full/292/5526/ 
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cultures of these forms were obtained (9). Iso-
lated strains ZAS-1, ZAS-2, and ZAS-9 were 
also phylogenetically affiliated with the trepo- 
nemes (Fig. l), and all three strains produced 
acetate as a major fermentation product (10). 
ZAS-1 and ZAS-2 could make acetate from 
H, + CO, (9),a mode of energy-yielding me- 
tabolism previously unknown in the phylum 
Spirochaetes (11). Hence, they are important to 
the nutrition of termites, wluch use microbially 
produced acetate as a major carbon and energy 
source (2). Having these spirochetes in culture 
prompted us to examine whether they might 
also fix N, and thereby contribute to termite 
nitrogen economy as well. To do tlus, we ex- 
amined their genomic DNA for the presence of 
nlfH (12) and their ability to fuc N, (13). 

Two nlfH homologs were found in each 
termite gut treponeme, nzjHhomologs were also 
found in the bovine ruminal treponeme, Trepo- 
nema blyantii; the human oral treponemes, 
Treponema denticola and Treponema pectino- 
vorum; and the free-living spirochetes, Spiro- 
chaeta aurantia, Spirochaeta zuelzerae, and 
Spirochaeta stenospepta. The deduced amino 
acid sequence of each NifH had motifs typically 
present in the nitrogenase iron-protein, includ- 
ing conserved cysteines at positions (Klebsiella 
pneumoniae numbering) 86, 98, and 133 [and 
39, for nzjH clones obtained with the IGK for- 
ward primer for polymerase chain reaction 
(PCR)] and an arginine at position 101, which is 
a site for reversible inactivation by adenosine 
diphosphate-ribosylation in some bacteria (14). 
However, the NifHs were phylogenetically di- 
verse and not congruent with spirochete phylog- 
eny based on 16s rRNA sequences, which 
groups all spirochetes in a single phylum. This 
lack of congruence extended to multiple NifH 
homologs in the same spirochete (Fig. 2). One 
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homolog from each termite gut treponeme was 
grouped in a deeply branching cluster (IV)that 
included NifH-like proteins from eight Euvy-
archaeota. However, it is not clear that proteins 
in cluster TV function only, or at all, in N, 
fixation (15). 

We could not demonstrate nifH in the 
halophile, Spirochaeta halophila, or in the 
swine pathogen, Brachyspira (Serpulina) 
hyodysenteriae. Furthermore, no structural 
genes for nitrogenase were identified in the 
completely sequenced genomes of the syph-
ilis spirochete, Treponema pallidum, or the 
Lyrne disease spirochete, Borrelia burgdor-
feri (16) (Fig. 1). 

The presence of n@fs in S. aurantia, S. 
zuelzerae, and termite gut treponeme U S - 9  
was unambiguously correlated with N, fixation, 
as shown by their exhibition of N,-dependent 
growth and NH,+-repressible acetylene reduc-
tion (AR) activity (Fig. 3 and Table 1). For S. 
aurantia and ZAS-9, fixation of "N, was also 
demonstrated. S. aurantia grew in a chemically 
defined medium with N, as nitrogen source 
(Fig. 3A), so the I5N content of cells (89.0129 

Clone RFS25 
ZAS-1 . 

Treponemapectinwomm. 
-Spirochaeta halophila 

Borrelia bugdorferi 
Cristispirapectinis 

Brachyspirahyodysenteriae 

I Brevinemaandersonii 
Escherichiacoli -

0.10 

Fig. 1. Phylogenetictree inferred by maximum 
likelihood analysis of near-full-length 16s 
rDNA sequences of termite gut Treponema 
strains ZAS-I, ZAS-2, and ZAS-9 (bold), repre-
sentative known spirochetes, and spirochetal 
165 rDNA clones obtained directly from gut 
contents of the termites (clone prefix): Zooter-
mopsis angusticollis (ZAS), Reticulitermesflavi-
pes (RFS), and Nasutitermes lujae (NL). The 
homologous sequence from E. coli was used as 
an outgroup. Scale bar represents units of evo-
lutionary distance and is based on sequence 
divergence (40). Symbols are as follows:. or o, 
nifH (present or not detected, respectively); 
or 0, nitrogenase activity (present or not de-
tected, respectively). Absence of a symbol in-
dicates that the spirochete was not examined 
for the property. 
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atom % excess) was close to that of the I5N2 
used (99.3094 atom % excess),reduced only by 
the I4N in cells canied over with the 10% (vlv) 
inoculum pre-grown on unlabeled N,. The spe-
cific activity of nitrogenase in S. aurantia (Ta-
ble 1) was sufficient to provide virtually all the 
nitrogen needed by cells [14.7 pg of N per 
(hour X mg protein)] duringexponential growth 
on N, [doubling time = 17.3 ? 2.2 hours (n = 
4)], assuming that protein and nitrogen consti-
tute 55% and 14%, respectively, of the cell dry 
mass (17). By contrast, ZAS-9 and S. zuelzerae 
could not be grown without yeast autolysate 
(YA), which itself was a source of fixed nitro-
gen (18). Nevertheless, nitrogen-limited growth 
could be achieved by using media containing 
2% (v/v)YA with no added NH4CI.AR activity 
in these species commenced with the onset of 
N2-dependentgrowth, which was marked by the 
divergence in growth curves of cultures under 
N,ICO, versus those under Ar/CO, (Fig. 3, B 
and C). Thus, the I5Ncontent of ZAS-9 (6.3789 
atom %excess)grown under '5N21C0, was less 
than that for S. aurantia, because it was diluted 
by I4Nassimilated from YA. On the basis of the 
difference in cell yield of ZAS-9 grown under 
N,ICO, versus Ar/CO, (Table l), U S - 9  
should have contained about 38 atom % I5N if 

I5N2were the sole nitrogen source during N2-
dependent growth (19). However, the observed 
value of 6.3789 atom % excess implies that N, 
fixation enabled cells to assimilate nitrogenous 
compounds in YA that would otherwisebe uti-
lized poorly or not at all. A similarsituation may 
exist for S. zuelzerae, because nitrogenase activ-
ity [2.3 pg of N, per (hour X mg protein); Table 
11 during N,-dependent growth (doubling time 
-21 hours) (Fig. 3C) would supplyonly 20% of 
the nitrogen needed for each doubling in bio-
mass. Therefore, nitrogenase activities reported 
in Table 1for these two spirochetesare probably 
not the maximum attainable by cells. 

0, (0.01 atm) immediately and completely 
inhibited AR by S. aurantia (a facultative anaer-
obe) and by S. zuelzerae and ZAS-9 (strict 
anaerobes), implying that N, fixation by ZAS-9 
in situ might be inhibited if cells swam into the 
microoxic region near the hindgut epithelium 
(20). However, the central region of hindguts 
may not be an ideal rehge because concentra-
tions of H, [an inhibitor of N, reduction, whose 
inhibitory constant (Ki) typically ranges from 
0.03 to 0.2 atm (21, 22)] can reach 50,000 parts 
per million volume (-0.06 atm) (20). Termite 
gut spirochete nitrogenases may be relatively 
resistant to inhibition by Hz. In this regard, it is 
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(shaded; composition 
adjacent) were ob-
sewed in a larger 
"comprehensive tree" 
(40) and are in accord 
with previously pub-
lished trees, but there 
was no support for 
group Ill when the 
smaller tree was in-
ferred using maximum 
likelihood. From the 
comprehensive tree, 

Antarct~cc 
<cordgrass 

G"G":tCLculla- Total sequences=62: 
3 Sprrochaetes, 51 T Gut clones 

and 8 Euryarchaeota- --
< ~ ~ s-m 

-T Gut clone f 

- -E - -

environmental clones 
.Ms barken-ZAS-9 i 

most closely related me I l I Z E i E  
to  spirochete NifHs, -T G U ~u,.,,,v .,.,u 

as well as sequences 
that illustrated the 
phylogenetic breadth of each cluster, were selected for inclusion in the smaller tree. Numbers to  
the right of selected nodes indicate support values for that node as estimated by quartet puzzling. 
The scale bar represents 0.1 expected substitution per amino acid position. Abbreviations are as 
follows: A, Azospirillum; Az, Azotobacter; C, Clostridium; Ch, Chlorobium; D, Desulfovibrio; Ms, 
Methanosarcina; 5, Spirochaeta; T, Treponema. Source of T Cut clones: CFN, Coptotermesformo-
sanus; CFN, Glyptotermesfuscus; NKN, Neotermeskoshunensis; PNN, Pericapritermesnitobei; TDY, 
Reticulitermessperatus. 



noteworthy that several spirochetal NifHs, in-
cluding those of ZAS-2 and ZAS-9, group in 
assemblage I11 (Fig. 2) with the conventional 
nitrogenase of Clostridiumpasteurianum, whch 
has a high K, for Hz inhibition of N, reduction 
(0.5 atm) (22). 

Analogous experiments with ZAS-1 and 
ZAS-2 (both of which required YA) revealed no 
enhancement of growth in the presence of N, 
and only trace levels of nitrogenase (Table l), 
which were nevertheless detectable even when 
ZAS-1 and ZAS-2 were grown in the presence 

of 10 mM NH4C1. Omission of molybdenum 
from the medium or its replacement by 10 pM 
NaVO,, or inclusion of 1 mM homocitrate (23) 
with various trace metal mixtures, did not en-
hance growth under N, or AR activity of ZAS-1 
or ZAS-2. Nor was AR activity increased by 
resuspension of cells in YA-free (non-growth 
supporting) medium. A trace level of AR activ-
ity was also observed with S. stenostrepta and 
was accompanied by production of both ethyl-
ene and ethane, implying the activity of an 
alternative nitrogenase (24). This is consistent 

Time (Hours) Time (Hours) 

1 100 

Fig. 3. N,-dependent growth optical density (OD) 
and rate of acetylene reduction t o  ethylene (C,H4) 

-- exhibited by 5. aurantia in a chemically def~ned 
medium lacking NH4Cl (A), and by Treponema strain 

f- ZAS-9 (B) and 5. zuelzerae (C) in media containing a 

E;0.1 
CI 
o 

l o  
E 

Y
5 

growth-limiting amount of yeast autolysate, but no 
added NH4CI (73). Incorporation of 5 t o  10 m M  
NH4CI into media resulted in increased growth 
yields, but complete suppression of acetylene reduc-
tion activity (not shown). 

1 

0.01 

0 20 40 60 
Time (Hours) 

Table 1. N2 fixation by free-living spirochaetas and termite hindgut treponemes. Cell yields are the 
mean ? SD for cells grown in NH4+-free medium (5. aurantia) or in media containing a growth-limiting 
amount of yeast autolysate, but no added NH4CI(other strains). Nitrogenaseactivity is the mean of two 
determinations on cells: (i) growing exponentially in the N2-dependent phase of growth (5. aurantia, 5. 
zuelzerae, Treponema strain ZAS-9) and (ii) growing under NH4+-limitation under N2/C02(Treponema 
strain ZAS-1 or ZAS-2) (73). Asterisk indicates an activity < 0.1. 

Cell yield Nitrogenase activity 
Spirochete [ I L ~N2 (hour x mg 

Gas phase Protein (kg  /ml) protein)-'] 

5. aurantia N2 34.9 2 4.2 (n = 4) 13.8 13.0 
Ar 0.0 2 0.0 (n = 5 )  

5. zuelzerae 	 "J2 202.9 i3.0 (n = 3) 2.3 i0.3 
Ar 100.1 2 4.0 (n = 3) 

ZAS-9 N2/C02 168.6 2 19.8(n = 3) 1.2 2 0.2 
Ar/C02 104.3 2 13.8 (n = 3) 

ZAS-1 N2/C02 38.4 i2.2 (n = 3) Trace* 
Ar/C02 38.1 2 1.4 (n = 3) 

ZAS-2 	 N2/C02 58.7 2 3.1 (n = 2) Trace* 
Ar/C02 57.1 2 4.0 (n = 3) 
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with the phylogenetic placement of S. steno-
strepta NifHl in group I1 (Fig. 2) among the 
iron-proteins of alternative nitrogenases of Azo-
tobacter vinelandii, C.pasteurianum, and Meth-
anosarcina barkeri. However, such activity was 
only observed occasionally, and then only from 
cells in stationary phase of NH4+-limitedcul-
tures. No evidence for N,-dependent growth or 
nitrogenase activity was btained with i? b y -
antii growing in a chemically defined medium 
under NH4+-limitation, nor was AR observed 
with cells of i? denticola pre-grown in a com-
plex medium and resuspended in a nitrogen-
deficient, non-growth supporting medium for 
assay. 

Our results reveal a new dimension to the 
metabolic diversity within the Spirochaetes and 
now extend to 6 (of 18) the number of phyla 
within the domain Bacterin that contain N,-
fixing representatives (11, 25). They also reveal 
a role for spirochetes in termite nitrogen nutri-
tion. Two observations suggest that N, iixation 
by spirochetes is important to termite nitrogen 
economy.First, spirochetes are unusually abun-
dant in termite guts, accounting for as much as 
50% of all prokaryotes (26). Second, many of 
the spirochete NifHs characterized in ths  study 
were identical or nearly identical to NifH clones 
obtained from a variety of termites, including 
NiMs known to be expressed in termite guts 
(Fig. 2), suggesting a spirochete origin for the 
latter. 

The potential contribution of spirochetes to 
the N, fixation activity exhibited by termites can 
be estimated assuming that the spirochete pop-
ulation is about 2 X lo6 cells per p1 hindgut 
contents [this value is one that corresponds to 
half of the direct microscopic count of pro-
karyotes (2&28)] and that one out of every 
three spirochetes fixes N, at a rate of 7.5 X 

10-In pg of N, per (hour x cell), i.e., midway 
between the per-cell fixation rates observed for 
ZAS-9 [2.8 X 10-In pg of N, per (hour X cell)] 
and S. aurantia [12.1 X lo-" pg of N, per 
(hour X cell)] (29, 30). When calculated for 
worker larvae of Zootermopsisangusticollis(the 
species from whch ZAS strains were isolated), 
whlch weigh 30 mg, have a gut volume of -10 
p1, and exhibit fixation rates that range from 
0.06 to 0.41 ng of N, fixed per hour (2), the 
spirochete-specific contribution could be as 
much as 5 ng of N, per hour. This is well above 
that needed to account for the rate exhibited by 
live insects. For Coptotermesformosanus (-3 
mg fresh weight; gut volume -1 pl), a species 
exhibiting some of the highest recorded rates of 
N, fixation [4.6 ng of N, per hour; (2)], the 
contribution would still be substantial (0.5 ng of 
N, per hour). This is probably another reason 
why elimination of spirochetes from guts de-
creases termite survival (31). 

Our results also reveal a heretofore unrecog-
nized role for free-living spirochetes in global N 
cycling. Spirochetes are ubiquitous in aquatic 
habitats (32), and considering the similarity of 
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some spirochetal NifHs to environmental NifH 
clones from zooplankton, cordgrass rhizosphere, 
and Antarctic ice pools (Fig. 2), it is not 
sonable to exaect that some of the latter clones 
will ultimatel; prove to be of spirochetal origin 
and that the s~irochete-s~ecific to 
N, fixation in such habitats will be substantial. 
Hence, the discovery of N, fixation in spiro- 
chetes adds a new "twist" to-our appreciation of 
this important, uniquely prokqote-mediated 
process. 
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