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that the remarkable chemical and physical 
properties of NO, which have only recently 
been linked to signaling between cells, ap- 
pear to have long been exploited by fireflies 
to control signaling between individuals. 
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Femtomolar Sensitivity of 
Metalloregulatory Proteins 

Controlling Zinc Homeostasis 
Caryn E. Outten' and Thomas V. O'Halloranl~** 

lntracellular zinc is thought to  be available in a cytosolic pool of free or loosely 
bound Zn(ll) ions in the micromolar t o  picomolar range. To test this, we determined 
the mechanism of zinc sensors that control metal uptake or export in  Escherichia 
coli and calibrated their response against the thermodynamically defined free zinc 
concentration. Whereas the cellular zinc quota is millimolar, free Zn(ll) con- 
centrations that trigger transcription of zinc uptake or efflux machinery are 
femtomolar, or six orders of magnitude less than one atom per cell. This is not 
consistent wi th  a cytosolic pool of free Zn(ll) and suggests an extraordinary 
intracellular zinc-binding capacity. Thus, cells exert t ight control over cytosolic 
metal concentrations, even for relatively low-toxicity metals such as zinc. 

Zinc is an essential element for living organ- 
isms (I )  and is the second most abundant 
transition metal in seawater and in humans. It 
is considerably less toxic than redox-active 
metals such as copper and is more soluble in 
oxygenated buffers than iron. Zinc serves as a 
cofactor in all six classes of enzymes as well 
as several classes of regulatory proteins (2, 
3). Several families of integral membrane 
proteins transport Zn(II), moving it across 
membranes into and out of cells (4 , j ) .  Less is 
known about the intracellular chemistry and 
mechanisms by which Zn(I1) is sensed, 
stored, or incorporated as a cofactor. A com-
mon assumption is that Zn(I1)-requiring en-
zymes and transcription factors passively ac- 
quire this essential cofactor from a cytosolic 
pool thought to be lo-' to lo-" M in free 
Zn(I1) (4, 6-9). Direct measurements of cy- 
tosolic zinc pools have proved difficult be- 
cause fractionation can lead to cross contam- 
ination between intracellular sites. 

Several Zn(I1)-responsive transcription fac- 
tors are known to mediate zinc homeostasis in 
vivo (Ik1.5) and are thought to do so by mon- 
itoring changes in this hypothetical pool of free 
zinc. The mammalian MTF1 sensor is estimat- 
ed to have a dissociation constant 4,below 90 
(*M (4). Estimates of the zinc sensitivity of the 
S~~nechococcusPCC7942 SmtB protein vary 
from <0.01 nM to 3.5 (*M(7.8). Expression of 
E. coli zinc uptake and export genes is regulated 
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by Zur and ZntR metalloregulatory proteins. 
respectively (I 620) .  We report here the mech- 
anism of Zur and the calibration of both of these 
zinc-sensing metalloregulatory proteins to di- 
rectly establish their functional "set point" rel- 
ative to [Zn(II)],,,. The femtomolar sensitivity 
of the pair indicates that intracellular fluxes of 
zinc between metalloenzymes and metal sen- 
sor, storage, and transport proteins are likely 
to involve direct transfer of the ion between 
proteins in kinetically controlled substitution 
reactions. 

The total zinc content of E. coli, also known 
as the zinc quota, was established by inductive- 
ly coupled plasma mass spectrometry (ICP- 
MS) analysis of whole cell lysate. Cells accu- 
mulate each transition element to a different 
extent, but zinc is concentrated by the greatest 
factor (Fig. 1). Growth in a metal-depleted me- 
dium establishes the minimal quota for this 
element, or 2 X 10' atoms of zinc per cell 
[determined here as a colony-forming unit 
(CFU)] (21,22) (Fig. 1A). These quotas can be 
interpreted as total cellular concentrations by 
dividing the moles per cell by a maximum 
volume for a cell grown in this medium (Fig. I .  
B and C). In the case of minimal medium, the 
minimal [Zn(II)ltot,, corresponds to 0.2 mM. 
This value is -2000 times the ambient total 
zinc concentration in this depleted medium 
(Fig. 1B). The ability of microbes to accumu- 
late metals such as iron to such high concentra- 
tions under starvation conditions is well estab- 
lished, but not documented for zinc. Cells 
grown in a medium replete with metals accu- 
mulate twice as much zinc per cell; howel.er, 
the cell volume also doubles (23, 24), leaving 
the total zinc concentration unchanged (Fig. 
1C). Thus. the total concentration of Zn(l1) is 
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tightly controlled in bacteria cells. We note that 
the iron and calcium quotas measured for each 
E. coli cell are the same as that of zinc. This 
indicates similar cellular requirements for these 
metal ions under these growth conditions. Far 
lower requirements are observed for other es- 
sential metals such as manganese and copper. 

To gauge how much of the total cellular zinc 
is free in the cytosol, we determined the in vitro 
zinc responses of Zur and ZntR under condi- 
tions in which the Zn(I1) concentration can be 
precisely controlled (25). Zur binds DNA in the 
presence of Zn(II), and excess EDTA inhibits 
this binding (1 7); however, the molecular mech- 
anism of transcriptional control has not been 
established. DNA footprinting (Fig. 2A) dem- 
onstrates that metal occupancy of Zur modulates 

its DNA affinity; this directly controls the bind- 
ing and activity of RNA polymerase (RNAP) at 
this promoter (26). The Zn,Zur form was stable 
as isolated and did not bind DNA when contarn- 
inating Zn(I1) in the buffer was sequestered by a 
stringent chelator (lane 2). In the absence of 
added Zn(II), Zur did not compete for DNA 
binding, allowing RNAP to bind (Fig. 2A, lane 
5) and form an open complex. The addition of 
excess Zn(I1) allowed Zur to bind to the znuC 
promoter (P,,,), and this prevented RNAP 
binding (lanes 3 and 6). This presumably in- 
volves the Zn2Zurform; however, the metal pro- 
tein stoichiometry of the DNA binding form has 
yet to be established. The orientation of RNAP 
was determined by examining the location of 
deoxyribonuclease (DNase I) and KMnO, hy- 

cells grown in LB I 
cells grown in MM I 

B Ocells grown in MM 
I MM ~ 

cells grown i 
LB 

persensitive bands in the RNAP footprint 
(Fig. 2C). The DNase I hypersensitivities are 
usually found upstream of the transcription 
start site (-20 through -60 in Fig. 2A) (19). 
KMnO, hypersensitivity outlines the tran- 
scription bubble that extends from the -10 
box to the transcription start site, establishing 
that RNAP forms an open complex poised to 
transcribe in the znzrC direction of the promot- 
er. The zntrC promoter has an extended -10 
(TGnTATTAT) with no clear -35 hexamer 
(Fig. 2C). Zur binding completely blocks the 
extended -10, thereby sterically hindering 
RNAP binding. These results directly estab- 
lish a metal-induced repression mechanism 
for Zur. 

Zur-DNA interaction correlated with the 
concentration of Zn(I1) in the assay (Fig. 3). 
With N,N,N',N'-tetrakis(2-pyridylmethy1)ethyl- 
enediamine (TPEN) present as a zinc buffer, 
the free zinc concentration at half-maximal Zur 
binding to the DNA is 9.6 (23.0) X lo-'' M. 
The [Zn(II)],, was calculated with [TPEN],,,, 
[Zn(II)],o,al, and K', the apparent binding 
constant at a given pH and ionic strength: 

Zn(II),, + TPEN E Zn-TPEN ( 1 ) 

This value was calculated from the absolute 
binding constants for Zn-TPEN (25, 27). As 
shown in Eq. 2, log Kt,,-,,,, = 15.2 at pH 
7.6, 0.1 M ionic strength: 

where Kal, Ka2, Ka3, and K,, are successive 
protonation constants for TPEN. 

To determine whether the zinc-dependent 
binding of Zur to DNA correlated with re- 
~ression of the znu genes, we conducted in - . 

Fig. 1. Metal content of E. coli cells grown in LB and glucose minimal medium as determined by vitro run-off transcription assays with Zur 
ICP-MS. (A) Atoms per cell (determined as CFU) for each metal ion in minimal (MM) and LB and the znlr ~ ~ ( 1 1 )  uptake system (28). 
medium. The reported values are the mean of three independent measurements; error bars are SDs. Amounts of znllC RNA transcript (B and C) The E. coli metallome, i.e., the total metal content of the cell, is represented in terms of 
moles per cellular volume for cells grown in minimal medium (B) or LB medium (C) and compared with [Zn(ll)I*e (Fig. 4). With 25 F~ TPEN 
with the total metal concentrations in the relevant growth medium (22). The unfilled columns in the buffer, half-maximal repression by Zur 
represent detection limits for low-abundance elements under these experimental conditions. occurs when the total Zn(I1) concentration is 
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Fig. 2. Zur footprint- A Zur - + + - + + - - + + - + +  B 
- - + - - +  

Zur Regulation Mechanism 
ingand znuC promoter Zn(lll - - + - - + -
s t k u r e .  (A) Zur 
DNase I (left, lanes 1 
to 7), and KMnO, 
(right. Lanes 1 to  6) 
footprinting with the 
nontemplatestrand of 
P,,,,. Zur = 50 nM; 
RNAP = 50 nM; 
DNA = 1 nM; Zn(ll) = 
25 pM; TPEN = 10 
pM. Lanes (3 are gua-
nine-specific sequence 
Ladders. (B) Mecha-
nism for Zur regulation 
[extended (ext) -101. 
The promoter Location 
and protein-binding 
sites are scaled to  
match the gels shown 
in (A). (C) Summary of 
footprinting results 
from IAl outlining the 

- L  4. 

-3O-, - - - Y1. 2 - .  I...-*-- -
-20-z.- m - 3  

-e*--d 

-10- 1_ 9 s  
-=! 
-4 raw-

+1- :: --- --- mu--
+lo--=-
+20- -

+ZnI:;N3 

lanes 
1 

lanes lanes 
3 4&5 

lanes 
6 

Zur- a;ld ~ ~ ~ p - b i i d i n gP 
V

sites and the znuC zn-zur 
moter structure. The znuC 

-20 extended-10 +1 
-50 -40 -30 +20 

ZnuC 
extended -10 is out- -6,0 -*-- - Met 

+40 

Lined in black and the TTATGTAACATLTGCGACCZTAATCGTAA~GAATATGAGGGTG C A A G A C T ~ T T A A ~ C A A G T C T E  
areas protected by Zur AATACATTGTATTACGCTGGTTATTAGCATTACTTATACTCTTCA CGTTCTGATTTTAATTGTACTGTTCAGAC 

or RNAP from DNase I 
Li 1un

cleavage are highlight-
ed in gray. Vertical ar- RNAP 

-20 -10 
rows ( t 4) indicate -40 

-60 +++ +++ . ++ -:++++-O: - -
DNase I-hypersensi- ~.T~~TGTA~CXPLTGCGACC~T~TCG~T~TATGAGAA~ 
tive sites and asterisks AATACATTGTATTACGCTGGTTATTAGCATTACTTATACTCTTCAC GT-TGATGACGTTCTGATTTTAATTGTACTGTTCAGAC 

t t tt ttt - - - -
(*) indicate 
hypersensitive sites. 
The transcriptionstart site for the znuC RNA transcript (+1) was determined by primer extension (39). Dashed horizontalarrows indicate the Location of the 
imperfect palindrome (77). 

Fig. 3. DNase I foot-
printing of Zur and the G 

[Zn(ll)l 
II) -template strand of -- -7 n-yt - ' 

PznUc with varying + 3 0 - ~ ~ ~ ~ ~ ~ ~ B ~ $ ~ ~
[Zn(ll)]. Zur = 50 nM; +20-- ,,7 5 -
DNA = 1 nM; Zn(ll) = -smm' d " w ~ ? ! P q " g ~ ~ ~.g

A k u - - *  20 to 30 pM; TPEN = +I --MY 
.1 

t ... . . - ,27.5 yM; [Zn(ll)lhe 
- .was calculated with 'IO- i ;- -----___ _. - __ ..[Zn(ll)l,totall [TPENlto~al. -20 - e~~~~-.~"t;:tr!;

and K ,,,,,,. A mlx-
if Lli 

ture of Zur and a 340- -30- ' 
- - - -

b. 

bp DNA fragment con- -40 
taining the Zur opera- L - -

tor was titrated with 
ZnSO, to a final con-
centration of 30 pM total Zn(ll). The extent of projectionof the footprinted region [see (79) for methods] in the left panel is plotted against [Zn(ll)] free in 
the right panel. 

6.4 (50.4) pM, which corresponds to [Zn-
(II)],, = 2.0 (f0.1) X 10-16 M. This value 
is very close to the [Zn(II)],, value from the 
independent Zur-DNA-binding assay, indi-
cating that RNAP does not substantially af-
fect the metal response of this Zn(I1) receptor. 
Zur competes with TPEN for Zn(II), denoting 
a high Zn(I1) affinity of this metalloprotein. 

To establish the relative sensitivity of ZntR 
for Zn(II), we also conducted transcription ex-
periments under identical conditionswith ZntR 
and the zntA promoter (Fig. 4). Half-maximal 

activation by ZntR occurred at 16.6 (+0.7) pM 
Zn(I1) with 25 pM TPEN, which corresponds 
to [Zn],, = 11.5 ( 5  1.3) X 10- l6 M. Indepen-
dent measurements of ZntR affinity for Zn(I1) 
reveal a similar value for the zinc-protein dis-
sociation constant (29). 

The transcriptional response profiles of the 
Zur-P,,, and ZntR-P,, systems reveal that 
these proteins work in series to control zinc 
homeostasis. The precise zinc concentrationsat 
which these systems switch on and off define 
the physiological onset of zinc starvation and 

zinc toxicity. As the cell acquires sufficient zinc 
for growth and cell division, expression of the 
znu uptake system is decreased. Once the min-
imal quota is slightly exceeded and the zinc 
burden of the cell begins to increase, the zntA 
efflux system is expressed. Comparison of the 
profiles provides a gauge of the optimal free 
zinc concentrationsin the cells.The narrowness 
of this window reveals the delicate balance 
between Zn(I1) deficiency and overload, sug-
gesting a remarkably small tolerance range for 
cytoplasmic zinc. 
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Fig. 4. Zur and ZntR 
transcription assay re- 
sults as a function of 
[Zn] ,,,. [RNAP] = 
[~ur !  = [ZntR] = 50 
nM, [DNA template] 
= 4 n ~ ,  [TPEN] '= 25 
u,M. The dotted line 
and the solid line rep- 
resent the fit of the 
ZurIP,,,, (open trian- 
gles) and ZntRIP,,,, 
(closed circles) data 
points, respectively, 
to  a sigmoidal func- 
tion. The area high- 
lighted in gray is the 
range of [Zn],,,, be- 
tween the half-maxi- 
ma1 induction point 
on the two curves. 

The magnitudes of these Zn(I1) response metal ion-binding sites, which greatly out- 
thresholds are surprisingly small, especial- number the full metal ion content of the 
ly when the volume of the cell is consid- 
ered. In E. coli, cell volumes typically vary 
over a factor of 7 depending on the stage in 
the cell cycle or upon the nutrient content 
of the growth medium (23, 24, 30, 31). 
With 1.8 X 10-Is liter as the maximum 
volume of a typical E. coli cell in exponen- 
tial phase in minimal growth medium, the 
lowest possible concentration of free zinc, 
corresponding to one zinc atom per cell, 
would be 1 X lop9  M. Given that these key 
metalloregulatory proteins are saturated at 
a free zinc concentration of about 10-Is M, 

cell. Comparison of the data in Fig. 1A with 
the limited E. coli proteome data available 
to date suggests a similar situation for 
Zn(I1): At least 12% of the zinc quota (2 X 
lo5 atoms per cell grown in minimal medi- 
um) is tied up by only eight proteins, the 
major known component being RNAP 
(5000 copies, two Zn per copy), and five 
tRNA synthetases (-2000 to 3000 copies 
each) (24). More than 40 additional E. coli 
proteins are known to require a tightly 
bound zinc; however, the copy numbers of 
these proteins are not known. A minimal 
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The vertical distribution of bacteriochlorophyll a, the numbers of infrared 
fluorescent cells, and the variable fluorescence signal a t  880 nanometers wave- 
length, all indicate that photosynthetically competent anoxygenic phototrophic 
bacteria are abundant in  the upper open ocean and comprise at  least 11% of 
the total  microbial community. These organisms are facultative photohetero- 
trophs, metabolizing organic carbon when available, but are capable of pho- 
tosynthetic light utilization when organic carbon is scarce. They are globally 
distributed in  the euphotic zone and represent a hitherto unrecognized com- 
ponent of the marine microbial community that appears t o  be critical t o  the 
cycling of both organic and inorganic carbon in  the ocean. 

Although closely related to purple photosyn- 
thetic bacteria, aerobic anoxygenic photohet- 
erotrophs (AAPs) are obligate aerobes, with 
unusually high concentrations of carotenoids 
(1-3), low cellular contents of bacteriochlo- 
rophyll a (BChla) (4) ,  and while containing 
photosynthetic reaction centers (RC) and 
light harvesting complex I (LHI), they often 
lack LHII (3). Photosynthetic energy conver- 
sion has been confirmed in several species 
(5-a), but most known AAPs have been iso- 
lated from organic-rich environments (9-1 l ) ,  
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where they appear to be heterotrophic. Re- 
cently, AAPs were found throughout the sur- 
face waters of the oligotrophic ocean (12), 
however, their abundance, distribution, and 
potential ecological importance were un-
known. Here, we report quantitative measure- 
ments of the vertical distribution of AAPs 
and BChla in the open ocean, determine the 
photosynthetic competence of these organ- 
isms, and evaluate their contribution to the 
marine carbon cycle. 

To characterize the vertical distributions 
of AAPs and their photosynthetic properties 
we used an Infrared Fast Repetition Rate 
(IRFRR) fluorescence transient technique 
(12, 13). Samples obtained from discrete 
depths were analyzed within 60 min of sam- 
pling (14). We assessed the distribution of 
AAPs using the BChla fluorescence signal at 
880 nm (Fig. lA), and measured bulk BChla 
by high-performance liquid chromatography 
(HPLC) (15) (Figs. 1A and 2A). The BChla 
concentrations reached a maximum of 3 to 5 
ngiliter at about 30 m and decreased to levels 
<0.01 ngiliter below 150 m (Fig. 1A). Chlo- 
rophyll a (Chla), which in the open ocean is 
only found in oxygenic phytoplankton, was 
about 150-fold more abundant. The vertical 
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distribution of Chla, however, was closely 
correlated with BChla (Fig. 1B). The HPLC- 
based estimates of B C ~ I U&responded to the 
in vivo fluorescence at 880 nm, allowing us 
to use the IRFRR signal (which reflects-the 
radiative losses from LH antennae), to derive 
the concentration of BChla in situ and vice 
versa. 

To quantify the representation of AAPs, we 
counted the BChla-containing and total, 4'6- 
diamidino-2-phenylindole (DAPI) stained cell 
numbers by epifluorescence microscopy (16) 
(Fig. 1C). Model I1 regression analysis of the 
relationship between the fluorescence signals, 
pigment concentrations, and cell counts reveals 
a significant correlation between the 880-nm 
fluorescence emission and BChla (3= 0.68, 
F = 62.6, Fig. 3A), and the IR fluorescent cell 
counts (3= 0.49, F = 21.6, Fig. 3B). From 
these data, we calculated the average cellular 
BChla content at 1.2 X 1 0 '" mol per cell. The 
morphology of a representative isolate from the 
surface waters (cylindrical motile cells. approx- 
imately 1.2 km long, 0.7 km in diameter) 
allows us to estimate the cell volume at about 
0.5 km3, a cell wet weight of 0.5 pg, and a cell 
dry weight of 0.05 pg, yielding a BChlaid~y 
weight ratio of about 2.4 pmoVg. This ratio is 
similar to that of En)throbacter longus (17). but 
much higher than that of Cirvomicrobi~~nl 
bath).omarinum (18). Assuming 36 BChla mol- 
ecules/RC+LHI (lY), we estimated about 2000 
RCs per cell. The cellular BChla content cal- 
culated here is about an order of magnitude 
lower than that of Rhodobacter sphaeroides 
(20), and the BChla/RC ratio is also about 
fivefold less than that of typical purple nonsul- 
fur bacteria (19). However, the effective photo- 
synthetic absorption cross section measured 
at 470 nm (12) (about 62 A') was comparable 
to that measured in a laboratory culture of R. 
sphaevoides (about 70 A'). By comparison, 
the effective absorption cross section in pho- 
tosystem I1 reaction centers in phytoplankton 
averaged 420 A', consistent with 200 to 300 
ChlaIRCII. Although the rate of photon ab- 
sorption/RC was sevenfold less than in their 
oxygenic planktonic counterparts, AAPs dis- 
play a similar light utilization efficiency per 
unit of chromophore. 

Fluorescence excitation spectra, recorded 
at the emission maximum of 875 nm (211 
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