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of MDM2 (14)  (Fig. 2), inhibition of 
MDM2 binding, although preventing p53 
degradation, would not block p53 nuclear 
export and thus would not efficiently accu- 
mulate p53 in the nucleus to allow maximal 
p53 activation. On the other hand, inhibit- 
ing p53 nuclear export without breaking its 
binding with MDM2, although causing the 
nuclear accumulation of p53, would not 
reach maximal p53 activation either be- 
cause MDM2, in addition to its activity in 
promoting cytoplasmic p53 degradation, 
can also directly inhibit p53's transactivat- 
ing activity in the nucleus (4). We suggest 
that DNA damage-induced phosphorylation 
may achieve optimal p53 activation through the 
additive and complementary action of both in- 
hibiting MDM2 binding to, and the nuclear 
export of, p53. 
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In Silico Mapping of Complex 
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Experimental murine genetic models of complex human disease show great 
potential for understanding human disease pathogenesis. To reduce the time 
required for analysis of such models from many months down to milliseconds, 
a computational method for predicting chromosomal regions regulating phe- 
notypic traits and a murine database of single nucleotide polymorphisms were 
developed. After entry of phenotypic information obtained from inbred mouse 
strains, the phenotypic and genotypic information is analyzed in silico to predict 
the chromosomal regions regulating the phenotypic trait. 

Identification of genetic susceptibility loci 
has promised insight into pathophysiologic 
mechanisms and the development of thera- 
pies for common human diseases. Analysis 
of experimental murine genetic models of 
human disease biology should greatly facil- 
itate identification of genetic susceptibility 
loci for common human diseases. We 
present a computational method that mark- 
edly accelerates genetic analysis of murine 
disease models. A linkage prediction pro- 
gram scans a murine single nucleotide 
polymorphism (SNP) database and, only on 
the basis of known inbred strain phenotypes 
and genotypes, predicts the chromosomal 
regions that most likely contribute to com- 
plex traits. The computational prediction 
method does not require generation and 
analysis of experimental intercross proge- 
ny, but it correctly predicted the chromo- 
somal regions identified by analysis of ex- 

'Department of  Genetics and Cenomics, Roche Bio- 

science, Palo Alto, CA 94303, USA. ZRoche Molecular 

Systems, Alameda, CA 94501, USA. 3Department of  

Chemistry, Stanford University, Stanford, CA 94305- 

5080, USA. 40regon Health Sciences University and 

Portland Veterans Affairs Medical Center, Portland. 

OR 97201, USA. 


*These authors contributed equally t o  this work. 

:To whom correspondence should be addressed: 

gary.peltz@roche.com 


perimental intercross populations for mul- 
tiple traits analyzed. 

A Web-accessible database was devel-
oped, which contains allele information 
across 15 inbred strains and specifies geno- 
typing assays for over 500 SNPs at defined 
locations in the mouse genome (http:/l 
mouseSNP.roche.com). These SNPs were 
identified in our laboratories by direct se-
quencing of polymerase chain reaction (PCR) 
amplification products from defined chromo- 
somal locations. This database also incorpo- 
rates published allele information for 2848 
SNPs, 45% of which are characterized in a 
subset of kfus musculus strains; 55% of the 
SNPs are polymorphic between ~Muscasta-
neus and one or more M. musculus subspe-
cies ( I ) .  User queries regarding SNPs found 
within a specified chromosomal region or 
between selected inbred strains are executed 
in real time and provided through a graphical 
user interface. The oligonucleotide primer se- 
quences and conditions for performing allele- 
specific kinetic PCR genotyping assays (2) 
are also provided in the mSNP database [see 
supplemental material (3 ) ] .  

To demonstrate the utility of this informa- 
tion, the genome of pooled DNA samples 
obtained from intercross progeny was ana-
lyzed by two different genotyping methods. 
At 16 weeks of age, the 1000 F, progeny of 
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a C57BLl6 X B6D2 intercross display a non- 
sex linked, nornlal distribution of bone min- 
eral dcnsity (BMD) (4). Phenotypically ex- 
treme F, progeny with the highest ( n  = 150 
mice) and lowcst (11 = 149 mice ) BMD (top 
and bottom 15%. rcspcctivcly). were subject- 
ed to a whole-genome scan for association 
with BMD by genotyping individual DNA 
samples with 112 microsatellite markcrs. In 
addition, equal amounts of  DNA from the 
high and low BMD F, progeny was used to 
for111 two pools of DNA samples. Allele fre- 
qucncics in the pooled samples were mea- 
sured for 109 SNPs found in the mSNP da- 
tabase with the use of the previously de- 
scribed allele-specific kinetic PCR method 
(2). Differences in allele frequency between 

the two extremes for cach marker were 
scored. If a marker has no association with 
BMD, its expected frequency is 50%) for both 
extremes. The significance of each allele- 
frequency difference was calculated using thc 
z-test and plotted as a lod score (a logarith~n 
of the odds ratio for linkage) (Fig. I). A 
significant association (lod score > 3.3) was 
found for four regions on chromosomes 1, 2, 
4. and I I by the microsatellitc and SNP 
gcnotyping methods. SNP-based genotyping 
identified a linkage region near the centro- 
mere of chromosomc 13, which was not 
found using microsatellitc markers. Two SNP 
markers (2.2 and 6.6 cM) were morc proxi- 
mal to the centromere of chromosome 13 
than the most proximal (10 cM) microsatel- 

lite markcr used for genotyping the intercross 
progeny. This region is being invcstigated 
witli additional markers. 

SNP-based genotyping of pooled samples 
rcqi~ircd about 20-fold fewer PCR reactions 
and was performed much more quickly than 
microsatellitc gcnotyping of individual DNA 
samples. Replicate determinations (four 
times) werc performed here to asscss the 
reproducibility of the SNP-allele frequency 
deter~nination and measurement error. On av- 
erage, the standard deviation in allcle fre- 
quency measurement was ? 1.7'%,. In the fil- 
ture, it should be possiblc to reduce the num- 
ber of replicate PCR assays. 

We wanted to determine whether chromo- 
somal regions regulating quantitative traits 
(QTL intervals) could be co~nputationally 
predicted witli the usc of the niSNP database 
and available phenotypic information on in- 
bred strains. Using the allelic distributions 
across inbred strains contained in the mSNP 
database, the compi~tational method calcu- 
latcs genotypic distances between loci for a 

Pooled samples 

+ lndivldual Genotyplng 

pair of mouse strains. These genotypic dis- 
tances are then compared with phenotypic 
differences bctwccn the two mouse strains. 
The process is repeated for all mouse strain 
pairs for which phenotypic information is 
availablc. Lastly, a correlation value is dc- 
rived using linear regression on the pheno- 
typic and genotypic distances for each 
genomic locus. 

As a first example. we used the computa- 
tional method to oredict the chromosomnl 

Chromosome 

Fig. 1. Comparison of SNP-based genotyping of pooled DNA samples with microsatellite geno- 
typing of individual DNA samples. Phenotypically extreme F, progeny from a B6D2 intercross with 
the highest and lowest BMD were subjected to whole-genome scanning for association with BMD 
by genotyping either individual DNA samples (from 299 mice) with 112 microsatellite markers or 
two pooled DNA samples (150 mice per pool) with 109 SNP markers. The significance of each 
allele-frequency difference was calculated using the z-test and plotted as a lod score for all 
chromosomes. Dashed line indicates a lod score of 3.3, the threshold for genome-wide significance. 

Table 1. Comparison between experimentally identified QTL intervals with computationally predicted 
chromosomal regions for 10 phenotypic traits. The experimentally identified QTL intervals and pheno- 
typic information used for computational prediction are described in the references indicated and are 
summarized in supplementary tables 1 and 2 (3). PKC, protein kinase C; Exp., total number of 
experimentally verified QTL intervals; Correct, number of computationally predicted regions that overlap 
with the experimentally verified locus; Predicted, total number of predicted regions for each phenotype; 
Cutoff, percentage of the mouse genome included within the computationally predicted regions. 

Computational 
Phenotype Reference Exp. 

Correct Predicted Cutoff (%) 

AHR 
Alcohol preference 
Alcohol withdrawal 
BMD 
Eye weight 
Ganglion cell count 
Lymphoma 
MHC 
PKC activity 
PKC content 
Total 

location of the niajor histocompatibility com- 
plex (MHC) complex, which has bcen 
mapped to murinc chromosome 17. using the 
known H2 haplotypes for the MHC K locus 
for 10 inbred strains ( 5 ) .  Phcnotypic distanc- 
es for strains that sharcd a haplotypc were set 
to zero, and a distance of one was used for 
strains of different haplotypes. The SNPs 
within and near the MIIC region had a geno- 
typic distribution that was highly correlated 
with the phenotypic distances; the correlation 
value for this interval was 5.3 standard dcvi- 
ations above the average for all loci analyzcd. 
No other peaks in the mouse genome exhib- 
ited a comparable correlation with this phe- 
notypc (Fig. 2A). This computational analy- 
sis, which required lcss than 1 s to run on a 
standard desktop computer, excluded 98%) of 
the mouse genome from consideration with- 
out missing the genomic region known to 
contain thc MHC. 

In addition to the MHC locus, we tested 
the computational method using nine quanti- 
tative traits known from published studies 
that provided mapped QTL intervals and phe- 
notypic data across niultiple inbred strains for 
cach trait (Table 1) (3). The ability of this 
algorithm to identify chromosomal regions 
regulating susceptibility to experimental al- 
lergic asthma was invcstigated. Analysis of 
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intercross progeny between susceptible (AIJ) 
and resistant (C3WHeJ) mouse strains iden- 
tified a QTL interval on chromosome 2 and a 
suggested interval on chromosome 7 (6) .  
Analysis of a different experimental inter- 
cross identified QTL intervals on chromo- 
somes 10 and 11 (7). Phenotypic measure- 
ments for allergen-induced airway hyperre- 
sponsiveness (AHR) in four inbred strains 
was used for a computational genome scan. 
The experimentally identified QTL intervals 
on chromosome 2,7, 10, and 11 were among 
the strongest peaks identified by the compu- 
tational genome scan (Fig. 2B). The compu- 
tational method excluded 85% of the mouse 
genome from consideration without missing 
the experimentally mapped QTL regions. 

The ability of the computational method 
to correctly predict chromosomal regions 
containing experimentally verified QTL in- 
tervals was evaluated using 10 phenotypic 
traits (Table 1) (3). The percentage of correct 
predictions was characterized as a function of 
the percentage of the mouse genome con- 
tained within the predicted chromosomal re- 
gions. If predicted regions contained 10% of 
the mouse genome (by selecting 10% of the 
peaks with the highest correlation), then 15 of 
the 26 experimentally verified QTL intervals 
were correctly identified. As the threshold 
was raised, limiting the number of predicted 
candidate regions, more experimentally veri- 
fied QTL intervals were missed. In summary, 
at cutoff values ranging from 2 to 16%, 19 of 
26 experimentally verified QTL intervals reg- 
ulating 10 phenotypic traits were correctly 
identified (Table 1). 

We applied a Fisher Exact test to assess 
the significance of the computational predic- 
tions. The average size of a predicted genom- 
ic region was 38 cM, segmenting the 1500- 
cM mouse genome into 40 regions. There- 
fore, a total of 400 genomic intervals were 
analyzed for the 10 quantitative traits exam- 
ined. At a 10% genome-wide threshold, the 
computational method correctly identified 15 
(true positive) and missed 1 1 (false negative) 
of the 26 experimentally verified QTL inter- 
vals. The algorithm further predicted that 24 
genomic intervals (false positive) contributed 
to a phenotypic trait where no QTL had yet 
been experimentally characterized, and the 
predictions agreed with available experimen- 
tal data that 350 regions (true negative) were 
not QTL intervals for the 10 phenotypes ex- 
amined. The Fisher Exact test yields a highly 
significant P value (1.0 X 10-lo), confirming 
significant agreement between the computa- 
tionally predicted and experimentally deter- 
mined chromosomal regions. 

Computational analysis of the murine 
SNP database using phenotypic data from 
inbred parental strains rapidly identifies 
candidate QTL intervals. This can elimi- 
nate many months to years of laboratory 

work required to generate, characterize, 
and genotype intercross progeny, reducing 
the time required for QTL interval identi- 
fication to milliseconds. In addition to its 
rapidity and low cost, the computational 
prediction method has a substantial advan- 
tage over QTL analysis using intercross 
progeny or recombinant inbred strains (8). 
Because it performs multiple comparisons 
across a range of inbred strains, the com- 
putational method takes advantage of the 
total genetic variation provided by avail- 
able inbred mouse strains. 

The ability of the computational genome 
scan to perform whole-genome association 
studies using the mouse SNP database indi- 
cates that linkage disequilibrium may extend 
over large regions among inbred mouse 
strains. Our computational results were unex- 

pected because the number of different inbred 
strains for which phenotypic data was avail- 
able (4 to 10) was quite limited. Positional 
cloning and case-control studies in human 
populations are routinely performed with 
hundreds to thousands of individuals (9). 
Several factors contribute to the successful 
QTL predictions by computational scanning 
of the mouse SNP database. The use of inbred 
mouse strains limits variability due to envi- 
ronment, and timed experimental interven- 
tion and sampling limits error in phenotypic 
assessment. The inbred strains are homozy- 
gous at all loci, which eliminates confound- 
ing effects due to heterozygosity found in 
human populations. 

Recently, there has been increased em- 
phasis on using chemical mutagenesis in the 
mouse as a method for studying complex 

1 2  3 4 5  6  7 8 9 1 0 1 1  12 1 3 1 4  15 16 1 7 1 8 1 9  

Chromosome 

B 4 

Chromosome 
Fig. 2. Computational prediction of chromosomal regions regulating (A) MHC haplotype and (B) 
airway hyperresponsiveness. The correlation between the genotypic and phenotypic distributions 
is graphically shown for each trait; segments are arranged from centromeric to  telomeric for all 19 
autosomes. Each bar represents a 30-cM interval, and neighboring bars are offset by 10 cM. The 
dotted line represents a useful cutoff for analyzing this data; the most highly correlated 10% of the 
loci are above this line. Striped bars represent locations of experimentally verified QTLs. 
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biology. This has occurred as a result of the 
difficulties noted by in\ estigators using stan- 
dard methods for QTL analysis [reviewed in 
( l o ) ] .However, these studies can be marked- 
ly accelerated by application of the genotyp- 
ing method and computational tools de-
scribed here. Of course, specific gene candi- 
dates must be identified to understand the 
genetic basis of colnplex disease. A'e have 
already shown how integration of gene ex- 
pression data obtained with high-density oli- 
gonucleotide microarrays can be used in con- 
junction nith the SNP genotyping method to 
accelerate QTL analysis ( I I ) .  Therefore, da- 
tabases nith tissue-specific gene expression 
and phenotypic infom~ation across mouse 
strains could be used in conjunction with the 
inurine SNP database to computationally 
identify candidate disease genes. In a hypo- 
thetical experiment. the expression of 40.000 
murine genes in an affected tissue obtained 
from different mouse strains can be profiled. 
As many as 1% of the genes ~vill be reliably 
demonstrated to be differentially expressed in 
the tissue of the mouse strains lvith a different 

phenotype. The resulting list of 100 gene 
candidates could be computationally reduced 
by 90?6 by searching for genes that are en- 
coded within computationally predicted chro- 
mosomal regions, providing a reasonable 
starting point for analysis of complex disease 
biology. The application of this approach 
should reduce the frustrations and o\ ercolne 
the difficulties associated with QTL analysis 
in murine complex disease models. 
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