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evidence suggests that CR2 binds to C3d and 
EBV gp3501220 with overlapping but distinct 
sites (28) and involves S16 and Y68. These 
residues mapped on the CR2 surface are sep- 
arated from the area that interacts with C3d in 
our complex structure. 
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Glucose homeostasis depends on insulin responsiveness in target tissues, most 
importantly, muscle and liver. The critical initial steps in insulin action include 
phosphorylation of scaffolding proteins and activation of phosphatidylinositol 
3-kinase. These early events lead to activation of the serine-threonine protein 
kinase Akt, also known as protein kinase 0. We show that mice deficient in AktZ 
are impaired in the ability of insulin to lower blood glucose because of defects 
in the action of the hormone on liver and skeletal muscle. These data establish 
AktZ as an essential gene in the maintenance of normal glucose homeostasis. 

Type 2 diabetes mellitus is a complex, mul- 
tisystem disease with a pathophysiology that 
includes defects in insulin-stimulated periph- 
eral glucose disposal and suppression of he- 
patic glucose production. as well as in insulin 
secretion (1). Investigations into the molecu- 
lar pathways that mediate each of these re- 
sponses in normal individuals has led to the 
identification of numerous putative signaling 
molecules, but only a few have been con-
firmed in vivo as critical to normal glucose 
homeostasis (2). In particular, the in vivo data 
in support of the insulin receptor. insulin 
receptor substrate 1 (IRS1) and IRS2, as im- 
portant to the maintenance of normal insulin 
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responsiveness, have not been matched by 
equivalent evidence for a physiological role 
for downstream signaling molecules (3-6). 
The phosphoinositide-dependent serine-thre- 
onine protein kinase Akt (also known as pro- 
tein kinase B. or PKB) has been proposed to 
be an intermediate in the signaling pathway 
by which insulin controls both muscle and fat 
cell glucose uptake as well as hepatic glu- 
coneogenesis (7-10). However. experimental 
approaches based on dominant-inhibitory 
strategies have yielded contradictory results 
in regard to a role for Akt in insulin-stimu- 
lated glucose uptake, and not all studies have 
supported the kinase as important to insulin 
signaling in liver (11-14). 

In rodents and humans, there are three Akt 
each encoded by a separate gene 

(15-1 7). Because Akt2 appears to be en-
riched in insulin-responsive tissues and has 
been specifically implicated in the metabolic 
actions of the hormone (18-20), we generat- 
ed mice with a targeted disruption in the AktZ 
locus by homologous recombination. The tar- 

geting was designed insert LorP 
sites (21) flanking the sequence containing 
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the coding exons 4 and 5 (see supplementary 
material available on Science Online at 
www.sciencemag.orglcgilcontentlful1l292l 
552211 7291DC 1 .) (22). Mice harboring the 
targeted allele were identified by Southern 
blotting and were mated to transgenic mice 
expressing Cre recombinase driven by a 6-kb 
5'-flanking sequence from the Brn/Pou3f4 
gene to cause germ-line excision of exons 4 
and 5 (21,23). The progeny canying both the 
Cre transgene and the targeted allele were 
mated with wild-type (WT) mice to obtain 
offspring in which the Cre transgene was 
segregated away and the targeted allele was 
excised, as determined by the polymerase 
chain reaction (PCR) and Southern blotting, 
respectively. These mice were mated inter se 
to produce offspring with homozygous dele- 
tions of Akt2. Western blots of protein ex- 
tracts prepared from liver, muscle, and iso- 
lated adipocytes from homozygous knockout 
(Akt2-I-) mice showed loss of expression of 
Akt2 (Fig. I), without detectable effect on the 
levels of Aktl or Akt3 (24, 25). Mice from 
heterozygous matings were born at the ex- 
pected Mendelian ratio. Newborn pups ap- 
peared indistinguishable from their WT litter- 
mates and developed into adulthood without 
apparent growth defects. 

Ablation of Akt2 in mice resulted in a 
mild but statistically significant fasting hy- 
perglycemia (Fig. 2A). The increase in blood 
glucose concentration in Akt2-'- null ani- 
mals was more pronounced during fed states 
(Fig. 2B). Hyperglycemia was accompanied 
by an increase in the concentration of insulin 
in serum (Fig. 2C), suggesting that decreased 
responsiveness to the hormone in peripheral 
tissues may have resulted in compensatory 
hyperinsulinemia. Administration of an oral 
glucose load to 2-month-old Akt2-'- mice 
revealed mild glucose intolerance compared 
with WT or heterozygous mice, with elevated 
blood glucose levels with all time points mea- 
sured (Fig. 2D). The reduction in blood glu- 
cose concentration after intraperitoneal ad- 
ministration of insulin was also impaired in 
Akt2-/- mice (Fig. 2E), displaying elevated 
blood glucose at all time points measured (at 
60 min; Akt2-/- = 70.8 2 7.9 mgldl and 
WT = 22.3 2 1.1 mgldl). In all cases, Akt2 

Liver Muscle Adioocvte 

Fig. 1. Analysis of AktZ expression by Western 
blot. Homogenates were prepared from liver, 
skeletal muscle, or adipocytes of Akt2+/+ or 
Akt2-'- mice. Protein (50 pg) was resolved by 
SDS-polyacrylamide gel electrophoresis (SDS- 
PAGE) and transferred to a nitrocellulose mem- 
brane, which was probed with a polyclonal AktZ 
antibody (20). 

heterozygous mice were indistinguishable the glycolytic extensor digitorum longus 
from WT mice. These data are consistent (EDL) and oxidative soleus muscles from 
with a defect in the actions of insulin on WT and Akt2-'- mice. Hexose uptake in 
glucose disposal andlor production. EDL muscle lacking Akt2 was severely 

We assessed glucose homoeostasis by in- 
fusing into normal and Akt2-/- mice insulin 
and glucose under conditions that maintained 
blood glucose concentrations at physiological 
levels. With the use of such a euglycemic- 
hyperinsulinemic clamp protocol, total body 
insulin-dependent glucose disposal can be ac- 
curately ascertained, and was found to be 
reduced in the Akt2-/- mice (Fig. 3A). 
These data indicate a significant defect in. 
insulin-dependent glucose uptake into hor- 
mone-responsive tissues, of which muscle is 
the most important. To determine if insulin- 

blunted in the presence of 0.33 nM insulin, 
but the impairment was not apparent on ex- 
posure of the muscle to a higher concentra- 
tion of insulin (Fig. 3B). Deoxyglucose up- 
take into the soleus muscle lacking Akt2 was 
not significantly impaired at either the inter- 
mediate or maximal concentration of insulin 
(Fig. 3C). As assessed by Western blotting, 
targeted disruption of Akt2 had no effect on 
the expression of GLUT4, the insulin-respon- 
sive glucose transporter in muscle (Fig. 3D) 
(26). Thus, Akt2 is required for the posttrans- 
lational events mediating optimal insulin- 

stimulated glucose uptake is impaired by. the stimulated glucose uptake, at least in some 
loss of Akt2 in skeletal muscles, we assayed muscle groups. Insulin-stimulated hexose up- 
uptake of radiolabeled 2-deoxyglucose into take was also mildly impaired in adipocytes 
isolated muscles in the absence and presence isolated from Akt2-deficent mice (25). 
of insulin. We tested two representative mus- In addition to the contribution of reduced 
cles that differ in their metabolic properties, insulin responsiveness in muscle to the Type 

Time (Minutes) Time (Minutes) 

Fig. 2. Altered glucose homeostasis in mice with disruption of the AktZ locus. (A) Blood glucose 
concentrations from fasted mice. Values are the mean 2 SEM for WT (+I+) mice (solid bar, n = 
7 males and 7 females) and Akt2-I- (-I-) mice (open bar; n = 6 males and 6 females; P < 0.05, 
Student's t test). (B) Blood glucose concentrations from random-fed mice. Values are the mean 2 
SEM for WT mice (solid bar, n = 12 males and 12 females) and Akt2-I- mice (open bar, n = 12 
males and 11 females; P < 0.01, Student's t test). (C) Serum insulin concentrations as measured 
by a rat insulin enzyme-linked immunosorbent assay. Values are the mean 2 SEM for WT mice 
(open bar, n = 7 males and 5 females) and ~kt2-'= mice (solid bar; n = 6 males and 4 females; 
P < 0.01, Student's t test). (D) Glucose tolerance test. Animals were fasted overnight (15 hours). 
D-Glucose (2 glkg) was administered orally to conscious mice, and blood glucose concentrations 
were sampled at the indicated times. Values are the mean 2 SEM for WT mice (solid squares, n = 
7 males and 7 females) and Akt2-I- mice (open squares, n = 6 males and 6 females; P < 0.01, 
for WT versus Akt2-I- mice at each time point after the administration of glucose, Student's t 
test). (E) Insulin tolerance test. Porcine insulin (1 Ulkg) was administered by intraperitoneal 
injection to fasted conscious mice and glucose concentrations were determined by a glucometer 
(Glucometer Elite XL, Bayer, Tarrytown, New York) from whole blood collected from transversely 
sectioned tails. Values were normalized to the starting glucose concentration at the administration 
of insulin and represent the mean 2 SEM for WT mice (solid squares, n = 3 males and 3 females) 
and AktZ KO mice (open squares, n = 3 males and 3 females; asterisk indicates P < 0.05, for WT 
versus Akt2-I- mice, Student's t test). 
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soleus muscle was excised z- 
from 2- to 3-month-old WT -a-mo'RB a 0 
or Akt2-I- mice and exposed I B I  B I  
to insulin at the indicated 
concentrations. 2-Deoxyglucose uptake was determined as described (70). At least six mice per 
genotype were analyzed. The data are presented as the mean + SEM and include 2-deoxy- 
glucose uptake from both male and female mice, which did not display sex-dependent 
differences. In (B), asterisk indicates P < 0.01, for glucose uptake in Ak t2- /  mice versus WT 
mice, (Student's t test). (D) Expression of GLUT4 or insulin receptor in Akt2- '  mice. Protein 
extracts from liver, muscle, and fat from WT and Akt2-'- mice were resolved by SDS-PAGE 
and blotted for Akt2. GLUT4, and insulin receptor P-subunit (20, 24, 35) (E) Rate of hepatic 
glucose output. In vivo hepatic glucose output was deduced by subtracting the glucose infusion 
rate from the whole-body glucose uptake during hyperinsulinemic-euglycemic clamp, as in (A). 
B, basal (after overnight fast); and I, insulin stimulated (2.5 mu kg..' min-'). Values are the 
mean + SEM for 8 to 10 mice. 

Fig. 4. Analysis of islet A 
mass in pancreata from ., ..-+ , , c- ., ' - r .  lb-f- 

mice with disruotion in 1 

the Akt2 locus. (A) Rep- 
resentative islet mor- 
phology, shown as he- j 
matoxylin and eosin- 
stained histological : 
sections of pancreata I. 

from wild-type (WT) 
or AktZ-/- mice. Bar, 

k - I 
L 

represents 100 ym. (B) 
Relative islet area. ex- 

WT KO 

pressed as a percentage B 
of the total stained 4 T - 
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(C) Comparison of islet m 
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islets per field of view t; 
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0 

images from three 2- 
to 3-month-old male mice were used for each genotype. Values are the mean 2 SEM. P < 0.05, for WT 
versus Akt2-'- mice (Student's t test). 

2 diabetic phenotype, recent evidence has 
emphasized the critical role of hepatic insulin 
resistance in the development of the disease. 
For example, muscle-specific insulin receptor 
knockout mice maintain relatively normal 
glucose tolerance, suggesting that tissues oth- 
er than muscle may be critical for mainte- 
nance of normal concentrations of circulating 
glucose (27). In support of this idea, insulin 
fails to suppress hepatic glucose production 
in mice with a liver-specific insulin receptor 
knockout, and this targeted genetic defect is 
associated with severe glucose intolerance 
(28). To determine whether the acute actions 
of insulin on the liver require Akt2, we mea- 
sured hepatic glucose output in euglycemic- 
hyperinsulinemic clamp experiments. Mice 
lacking Akt2 demonstrated a complete failure 
of insulin to suppress glucose production nor- 
mally (Fig. 3E). 

A critical factor contributing to whether 
insulin resistance progresses to diabetes mel- 
litus is the capacity of the pancreatic beta cell 
to respond to increased demands for insulin 
secretion. The hyperinsulinemia observed in 
patients with impaired glucose tolerance is 
mimicked in mice lacking Akt2 (Fig. 2C). In 
pancreata from Akt2-/- mice, the near four- 
fold increase in islet mass is consistent with 
beta-cell compensation to insulin resistance 
(Fig. 4, A and B). In spite of the null mutation 
at the Akt2 locus, the pancreas remains capa- 
ble of responding to insulin resistance with an 
increase in islet mass (Fig. 4B) and number 
(Fig. 4C). However, because other mouse 
models of insulin resistance display a greater 
expansion in beta-cell mass, it is possible that 
disruption of Akt2 interferes with the full 
hyperplasic response (29). 

On the basis of these data, we conclude 
that Akt2 is required for the maintenance of 
normal glucose homeostasis in mice. The 
phenotype of mice with a monogenic alter- 
ation in the Akt2 locus includes impaired 
glucose tolerance and mimics some important 
features of Type 2 diabetes mellitus in hu- 
mans. The Akt2-I- mice are born without 
apparent defects, but develop peripheral in- 
sulin resistance and nonsuppressible hepatic 
glucose production accompanied by inade- 
quate compensatory hyperinsulinemia. The 
results of this study provide definitive in vivo 
evidence that Akt2, a signaling molecule 
downstream of the insulin receptor and phos- 
phatidylinositol 3-kinase (PI 3:kinase), is re- 
quired for the metabolic actions of insulin in 
liver and contributes to hormone signaling in 
muscle. The present studies do not allow one 
to distinguish between primary and second- 
ary effects, so it is possible that the changes 
in insulin sensitivity in muscle are a result of 
the compensatory hyperinsulinemia. Howev- 
er, equivalent insensitivity of muscle to insu- 
lin is not observed in another model of pro- 
found hepatic insulin resistance (28), sug- 
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gesting that the muscle phenotype in the an- 
imals lacking Akt2 is a cell-autonomous 
result of the kinase deficiency in the muscle 
cell. 

Although the simplest interpretation of 
our findings is that Akt2 represents an obli- 
gate intermediate in the pathway by which 
insulin acutely regulates glucose metabolism 
in muscle and liver, an alternative possibility 
is that the long-term absence of Akt2 leads to 
decreased expression of a critical insulin-
signaling molecule. However, the rapidity 
with which an inducible form of Akt produc- 
es insulinlike metabolic effects in both mus- 
cle and adipocytes favors the former interpre- 
tation (7, 30, 31). In addition, it is possible 
that the absence of insulin responsiveness in 
liver could be secondary to the lack of Akt2 
in another tissue. The ability of adipose cell- 
specific defects to lead to abnormalities in 
insulin-stimulated glucose uptake in muscle 
is now well established, and considerable 
evidence exists in support of an indirect path- 
way for the regulation of hepatic gluconeo- 
genesis by insulin (32, 33). However, circu- 
lating free fatty acid concentrations were nor- 
mal in the Akt2-deficient mice (25).In vivo, 
the metabolic abnormalities resulting from 
deficiency of Akt2 are not compensated by 
the presence of the highly related isoforms, 
Aktl (PKBa) or Akt3 (PKBy). Failure of 
these Akt isoforms to substitute for Akt2 may 
reflect differences in substrate specificity, in 
their relative abundance in insulin-responsive 
tissues, or both. 
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