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ed to clearly establish the dependence of the 
field strength on the value of x. 

We define a temperature T*,, at which 
the onset of spontaneous magnetic fields is 
observed, and this is plotted versus the oxy- 
gen content x along with Tc(x) in Fig. 4. At 
x = 0.67, T*,, is between the pseudogap 
transition T* ;= 140 K determined from the 
peak in the 6 3 C ~  NMR spin-lattice relaxation 
rate l/T,T (30) and the departure of the re- 
sistivity p(T) from linearity (31), and T* = 
200 K estimated from the downturn in the 
89Y N M R Knight shift (32). The hole con- 
centration p can be estimated from the fol- 
lowing empirical equation (33) 

The inset of Fig. 4 is a plot of < and T*,, 
versus the hole concentration p. If one assumes 
a linear extrapolation through the data points of 
T*,,(p) corresponding to x = 0.67 and x = 
0.95, T*,, falls to zero at a critical doped-hole 
concentration of p,, = 0.182 2 0.009. 

Our investigation of highly pure and ho- 
mogeneous crystals of YBa,Cu306+, reveals 
the onset of spontaneous static magnetic 
fields at a temperature dependent on the ox- 
ygen content x.1n the underdoped sample, the 
onset is near the pseudogap crossover tem- 
perature T* deduced from other methods, 
whereas the onset occurs well below at 
optimal doping. Although the occurrence of 
magnetic moments below T* is consistent 
with some recent theories of the pseudogap 
phase, the increased ZF relaxation rate is too 
small to clearly determine whether the static 
fields arise from a dilute or dense concentra- 
tion of magnetic moments. 
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Geometric Manipulation of 

Trapped Ions for Quantum 


Computation 

1.-M. Duan,* J. I. Cirac, P. Zoller 

We propose an experimentally feasible scheme t o  achieve quantum compu- 
tation based solely on geometric manipulations of a quantum system. The 
desired geometric operations are obtained by driving the quantum system t o  
undergo appropriate adiabatic cyclic evolutions. Our implementation of the 
all-geometric quantum computation is based on laser manipulation of a set of 
trapped ions. An all-geometric approach, apart from its fundamental interest, 
offers a possible method for robust quantum computation. 

The physical implementation of quantum 
computers requires a series of accurately con- 
trollable quantum operations on a set of two- 
level systems (qubits). These controllable 
quantum operations can be either of the tra- 
ditional dynamical origin (I) or of a novel 
geometric origin (2-7). The all-geometric ap- 
proach, proposed recently with the name of 
holonomic quantum computation (4-7), 
achieves the whole set of universal quantum 
gates solely based on the Abelian and non- 
Abelian geometric operations (holonomies), 
without any contributions from dynamical 
gates. The holonomies are acquired when a 
quantum system is driven to undergo some 
appropriate cyclic evolutions by adiabati- 
cally changing the controllable parameters 
in the governing Hamiltonian (8-10). The 
holonomies can be either simple Abelian 
(commutable) phase factors (Berry phases) 
or general non-Abelian operations, depend- 
ing on whether the eigenspace of the govern- 
ing Hamiltonian is nondegenerate or degen- 
erate. Besides its fundamental interest related 
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to a general geometric global structure, the 
holonomic quantum computation scheme has 
some built-in fault-tolerant features (2, 7), 
which might offer practical advantages, such 
as being resilient to certain types of compu- 
tational errors. Several schemes have been 
proposed for the geometric realization of the 
particular conditional phase shift gate with 
the use of the Abelian Berry phase (2,3), and 
one of them has been experimentally demon- 
strated with the nuclear magnetic resonance 
technique (2). For a universal quantum com- 
putation, one still needs to combine this par- 
ticular geometric gate with some single-bit 
dynamical gates (11). We propose an exper- 
imentally feasible scheme to achieve the uni- 
versal quantum computation all by the geo- 
metric means. This requires us to realize the 
non-Abelian holonomies as well as the Abe- 
lian ones, because the universal set of quan- 
tum gates is necessarily noncommutable. Our 
scheme, which is based on laser manipulation 
of a set of trapped ions, fulfills all the require- 
ments for holonomic quantum computation 
and fits well the status of current technology. 

For the holonomic quantum computation 
proposed recently (4-7), the computational 
space C is always an eigenspace (hlghly degen- 
erate) of the governing Hamiltonian, with a 
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trivial eigenvalue 0. Though the Hamiltonian 
restricted to the computational space is com- 
pletely trivial and there is .no dynamical evolu- 
tion at all, the dependence of the Hamiltonian 
on some controllable adiabatically changing pa- 
rameters makes the space C undergo a highly 
nontrivial evolution due to the global geometric 
structure in the parameter space. In fact, one 
requires any unitary operations in the space C to 
be obtainable by these geometric evolutions in 
order to achieve universal quantum computing. 
It is well known that some single-qubit opera- 
tions, together with a nontrivial two-bit gate, 
make a universal set of gate operations for 
quantum computing (11). It is enough for us to 
construct some looped paths in the parameter 
space to achieve the desired geometric evolu- 
tions corresponding to these gate operations, 
and then a composition of these 'parameter 
loops suffices to obtain an arbitrary unitary 
evolution in the computational space C. Here 
we show how to achieve all the desired geo- 
metric gate operations using a set of trapped 
ions. The schemes for ion-trap quantum com- 
puters based on the conventional dynamical 
evolutions have been proposed (12-15), and 
some single-bit and multi-bit gate operations 
have been demonstrated experimentally ( 1 6  
18). We use the same setup, but we use it to 
achieve holonomic quantum computation. We 
also note that an idealized scheme (19) was 
recently proposed for holonomic quantum com- 
putation. To the best of our knowledge, our 
proposal is the first realistic one that achieves 
all the elements of holonomic quantum compu- 
tation and is feasible with current technology. 

We choose the universal set of gate opera- 
tions to be u,(J~ = &+,I l ) j ( l I ,  (13 = 2426, 
and Upk) = &hi l l I, where1 0)i and I l)i 
constitute the computational basis for each 
qubit, 0; = i( 1 lL(0 1 - 1 O)i(ll) is the Pauli 

operator of the j qubit, and +,, +,, +, are 
arbitrary phases. The universality of this set of 
gates follows directly from the proof in (11) and 
is well known. F i t  we show how to realize the 
single-bit gates U,(J~ and U . J ~  geometrically. 
The system we have in mind is a set of ions 
confined in a linear Pauli trap (12,17,18). Each 
ion has three ground (or metastable states 1 O), 

I I), and I a), and one excited state 1 e) (Fig. 1). 
The state 1 a) is used as an ancillary level for 
gate operations. The ground states could be 
different hyperfine levels or in the same mani- 
fold but with different Zeeman sublevels, and 
they are coupled to the excited state 1 e) sepa- 
rately by a resonant classical laser with a dif- 
ferent polarization or frequency (a possible sep- 
arate addressing of the three levels is shown in 
Fig. 1). The Hamiltonian for each ion with the 
laser on has the form 

in the rotating frame, where no,  a , ,  f l a  are 
Rabi frequencies serving as the controlling pa- 
rameters, and h.c. represents the Hermitian con- 
jugate term. The Hamiltonian in the rotating 
frame is independent of the laser frequencies, 
because all the lasers are resonant with the 
corresponding level transitions. The parameters 
no,  0, should be set to zero initially so that the 
computational space spanned by 1 0)/ and I l)i is 
initially an eigenspace of the gate Hamiltonian 
with a zero eigenvalue. Then the three Rabi 
frequencies make an adiabatic cyclic evolution 
in the parameter space M with the change rate 
significantly smaller than the typical Rabi fre- 
quencies (the adiabatic condition), and the adi- 
abatic theorem ensures that the computational 
space remains the eigenspace of the gate Ham- 
iltonian with the zero eigenvalue, so there is no 

Fig. 1. Level structure and laser configuration 
for single-bit operations. A possible choice for 
the three ground or metastable states is that 
I I) and la) are two degenerate Zeeman sub- 
levels that are addressed by lasers with differ- 
ent polarizations, and 10) is the ground state 
(another hyperfine level) with slightly different 
energy, so that it can be addressed by a laser 
with a different frequency. 

dynamical phase contribution at all. However, 
we will explicitly show that the topological 
holonomies accompanying the adiabatic evolu- 
tions suffice for construction of the gates U,(J' 
and U.3, which in fact shows that any single- 

Fig. 2. Laser configuration for the two-bit op- 
eration. The same configuration is used for 
both ions. 

bit operation is obtainable by such holonomies. 
To get the gate U,(J~, we set no = 0 so that 

the state I 0)i is decou led, and choose 0, = k' ?~sin;e"P, na = &os? The relative amplitude 
0 and phase cp of the Rabi frequencies a, and 
sl, are the effective control parameters, and the 
absolute magnitude fl is irrelevant for the gate 
control as long as it is large enough to satisfy 
the adiabatic condition, which could be a good 
feature for real experiments. The dark state (the 
eigenstate with the zero-energy eigenvalue) of 
the gate Hamiltonian has the form cosil l)i + 
sinfe"PIa)i, where the parameters 0,cp make a 
cyclic evolution with the starting and ending 
point to be 0 = 0. Using the standard formula 
for the geometric phase (8, lo), we can show 
that this cyclic evolution achieves the gate op- 
eration U,(J~ with the acquired Beny phase 
+, = $ sinOd0dcp. This evolution has a definite 
geometric interpretation: The acquired Beny 
phase is exactly the enclosed solid angle $ d o  
swept by the vector always pointing to the (0,cp) 
direction. From this interpretation, one irnme- 
diately sees that the gate operation is deter- 
mined only by the global properly (that is, the 
swept solid angle) and does not depend on the 
details of the evolution path in the parameter 
space. This is an advantage of holonomic quan- 
tum computation, which makes it robust against 
certain types of errors. For instance, the local 
random errors along the evolution path caused 
by some unwanted interaction would have very 
small influence on the global property. 

Now we show how to achieve the gate U p  
geometrically. For this purpose, we choose 
no = nsinecoscp, n, = n s i n e ~ i n ~ ,  and na = 
&os0 in the Hamiltonian (Ea. 1). with the . . ,, 

parameters 0,cp similarly undergoing an adia- 
batic cyclic evolution from 0 = 0 to 0 = 0. The 
two degenerate dark states of this gate Hamil- 
tonian have the form ID,) = cos0(coscp 1 0). + 
a c p l i u  - sin0la)i and ID,) = coscp~ll, - 
sincp 1 O),, from which we can show, by using the 
formula for holonomies (6, 9), that the cyclic 
evolution of 0,cp achieves the gate operation 
U,'A with the phase +, = $ dn, the swept solid 
angle by the vector (0,cp). The ability to obtain 
both of the noncommutable geometric gates 
U,(J' and U p  in fact shows that one constructs 
non-Abelian holonomies, because the compos- 
ite holonomies of the U,(J' and U p  and of the 
U~J '  and U,(J' are different. Although the Abe- 
li& holonokes have been tested experimental- 
ly by various means (10, 20), the controllable 
demonstration of the non-Abelian ones is be- 
lieved to be more complicated (IO,19). Here, in 
contrast, we introduce a simple way to test this 
fimdamental effect by manipulating a single ion 
with a laser. In fact, for the demonstration of the 
non-Abelian holonomies, we do not need to 
exploit any interaction between the ions, so one 
can also use a sample of free particles instead of 
a single ion for a simple test. For instance, one 
can experimentally verifjr this by laser manip- 
ulation of a cloud of atoms in a magnetic- 
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optical trap, which is readily available in many 
laboratories. 

A combination of the gates Ul(J3and U i n  
permits us to implement any single-bit opera-
tion, which together with the nontrivial two-bit 
gate U , ( J ~ )between the qubits j,k are enough 
for universal quantum computation. To con-
struct the gate U3(jk)using geometric means, 
we need to exploit the Coulomb interactions 
between the ions. For ths  purpose, we provide 
a scheme based on a recent dynamical proposal 
(14), which uses two-color laser manipulation. 
The transition I 1) + 1 e) for the j,k ions is 
driven by a red and a blue detuned laser, re-
spectively, with detunings<v + 6) and v + 6 
(Fig. 2), where v is the phonon frequencyof one 
oscillation mode (normally the center of mass 
mode) and 6 is an additional detuning. Similar-
ly, the transition / a) + 1 e) is also driven by a 
red and a blue detuned laser, but with the 
additional detuning 6' # 6 to avoid the direct 
Raman transition. For simplicity, here we 
choose 6' = -8 as in Fig. 2. Under the condi-
tion of strong confinementq2  << 1 (the Lamb-
Dicke criterion),where q is defined by the ratio 
of the ion oscillation amplitude to the manipu-
lation optical wave length, the Hamiltonian de-
scribing the interaction has the form 

(2) 
where a;; eiqvI e),(p. 1 + h.c. (p. = 1,a) and 
a,,R, are the correspondingRabi frequencies, 
respectively, with the phases c p , ,  cp,. In writing 
the Hamiltonian (Eq. 2), we have neglected 
some trivial light shift terms that can be easily 
compensated, for instance, by another laser. To 
get a geometric operation, we choose the rela-
tive intensity 1 a,1 Ra 1 = tan(O12) and 
phase c p ,  - cpa = cp12, with the control param-
eters 0,cp undergoing a cyclic adiabatic evolu-
tion from 0 = 0. During the evolution, the 
computational bases loo),, 101!, and 1 lo),, 
are decoupled from the Hamiltonian (Eq. 2), 
while the 1 1I),, component adiabatically fol-
lows as cos: 1 1I),, + sin! e'q I aa),, which ac-
quires a Beny phase after the whole loop. So 
we get the conditional phase-shift gate U3Gk) 
with the purely geometricphase +, = 9dR, the 
swept solid angle by the vector ( 0 , ~ ) .This 
geometric two-bit gate has shared the advantag-
es of the recently proposed and demonstrated 
dynamical scheme (14, 18) in the sense that, 
first, the ion motional modes need not be cooled 
to their ground states as long as the Lamb-
Dicke criterion is satisfied;and second,separate 
addressing of the ions is not needed during the 
two-bit gate operation. 

For experimental demonstration of the 
above universal set of geometricgates, we need 
to consider several kinds of decoherence that 
impose concrete conditions on the relevant pa-
rameters. First, one should fulfill the adiabatic 
condition. This means the gate operation time 

should be larger than the inverse of the energy 
gap between the dark states and the bright and 
excited states. The energy gap is given by A, = 

for the single-bit gates and by A, = 

q2 I 1 for the two-bit gate. So we require 
that the single-bit and two-bit gate operation 
times tig (i = 1, 2) be reasonably long, so that 
the leakage error to the bright and the excited 
states, which scales as ll(Ait,g)2,is small. Sec-
ond. we need to avoid svontaneous emission 

duced in ths  paper will permit us to experimen-
tally investigate the fundamental Abelian and 
non-Abelian holonomies (10) and may open 
new possibilities for robust quantum computa-
tion (21, 22). 
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Explaining the Weddell 
Polynya-a Large Ocean Eddy 

Shed at  Maud Rise 
D. M. Holland 

Satellite obsewations have shown the occasionaloccurrence of a large opening 
in the sea-ice cover of the Weddell Sea, Antarctica, a phenomenon known as 
the Weddell Polynya. The transient appearance, position, size, and shape of the 
polynya is explained here by a mechanism by which modest variations in the 
large-scale oceanic flow past the Maud Rise seamount cause a horizontal 
cyclonic eddy to be shed from its northeast flank. The shed eddy transmits a 
divergent Ekman stress into the sea ice, leading to a crescent-shaped opening 
in the pack. Atmospheric thermodynamical interaction further enhances the 
opening by inducing oceanic convection. A sea-ice-ocean computer model 
simulation vividly demonstrates how this mechanism fully accounts for the 
characteristics that mark Weddell Polynya events. 

The Weddell Polynya-the largest observed Antarctica, that can occupy an area of well 
sea-ice anomaly of the polar oceans-is a over 200,000 km2, a size comparable to the 
hole in the sea-ice cover of the Weddell Sea, island of Great Britain. The appearance of 
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