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At least 16 fragments were detected in images of comet Cl1999 54 (LINEAR) taken 
on 5 August 2000 with the Hubble SpaceTelescope (HST) and on 6 August with 
the Very Large Telescope (VLT). Photometric analysis of the fragments indicates 
that the largest ones have effective spherical diameters of about 100 meters, which 
implies that the total mass in the observed fragments was about 2 X lo9kilograms. 
The comet's dust tail, which was the most prominent optical feature in August, was 
produced during a major fragmentation event, whose activity peaked on UT 22.8 ? 

0.2 July 2000. The mass of small particles (diameters less than about 230 mi- 
crometers) in the tail was about 4 X 10' kilograms, which is comparable to  the mass 
contained in a large fragment and t o  the total mass lost from water sublimation 
after 21 July 2000 (about 3 X 10' kilograms). HST spectroscopic observations 
during 5 and 6 July 2000 demonstrate that the nucleus contained little carbon 
monoxide ice (ratio of carbon monoxide to water is less than or equal to  0.4%), 
which suggests that this volatile species did not play a role in the fragmentation 
of ~11999 s4 (LINEAR). 

Cometary fragmentation events provide an op- approach to Jupiter in 1992, and disruptions that 
portunity to gather direct information on the occur for no apparent reason, although breakup 
internal structure and composition of cometary due to fast rotation is a tenable explanation in at 
nuclei, which is difficult to obtain in any other least some of these cases (2-4). The nucleus of 
way. Optical imaging observations of comets comet Cl1999 S4 (LINEAR), hereafter called 
suggest that their nuclei split at a rate of at least CLINEAR, underwent multiple fragmenta- 
once every hundred years (1) . These fragmen- tions during its recent apparition, culminating in 
tations are generally grouped into two catego- the complete disruption of its nucleus during 
ries: events that seem to be caused by tidal the latter part of July 2000 (5). CLINEAR did 
interactions with a nearby large object, such as not pass particularly close to any major plane- 
for comet DIShoemaker-Levy 9 after its close tary body during its current apparition, so tidal 
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disruption is apparently not responsible for its 
hgmentation. 

CLINEAR was discovered on 27 Septem-
ber 1999 (all dates are expressed in universal 
time) by the Lincoln Near Earth Asteroid Re- 
search (LINEAR) program (6) at a heliocentric 
distance of 4.3 astronomical units (AU) (1 
AU = 1.496 X 10' 'm is the average Earth-Sun 
distance). The comet was apparently on its first 
visit to the inner solar system £rom the Oort 
cloud, a vast reservoir of -10" comets that 
surrounds the Sun (7,8),and reached perihelion 
on 26 July 2000 at a heliocentric distance of 
0.77 AU. We observed CLINEAR both pre- 
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and post-perihelion, using several different h- 
cilities (Table l.). 

Our first observations of CLINEAR were 
made during 5 through 7 July 2000 with the 
Space Telescope Imaging Spectrograph (STIS) 
(9) on the Hubble Space Telescope (HST). 
During the observations on 5 July, the comet 
was on the rising portion of a strong activity 
outburst in which the comet's brightness in a 
0.15 arc sec by 0.15 arc sec region centered on 
the nucleus (0.15 arc sec projects to -90 km at 
the comet) increased by a factor of nearly 1.5 in 
-4 hours. When we observed the comet 1 day 

C O M E T  C I L I N E A R  

later, the brightness had fallen to -90% of the 
first value measured on 5 July and continued 
declining until our final observation on 7 July, 
when the brightness was only one-seventh of its 
peak value on 5 July. In an image taken on 7 
July, we detected at least one fragment located 
-460 km in projected distance tailward from 
the main nucleus. This was the only reported 
pre-perihelion detection of a fragment near 
CLINEAR, and it was possibly released from 
the nucleus during the outburst detected 2 days 
earlier. If so, and if the fragment started with 
zero velocity and was moving exactly along the 

Fig. 1. HST WFPC2 images of CILINEAR. (Top) A mosaic of two images taken in WFC mode on 5.38 
and on 5.45 August 2000, demonstrating that the bright tail dominated the comet's optical 
emission. However, near the western tip of the tail (within the outlined box; celestial north is 
straight up and east is to the left), one can see clear evidence for individual fragments. (Middle) 
This region is magnified, showing that the fragments resembled miniature comets with their own 
comae and tails. (Bottom) Our highest resolution image of the tip region, taken in PC mode on 5.18 
August 2000. The fragments are labeled with their letter names in the middle and bottom panels. 
The diamonds give the predicted position of the original nucleus using the JPL-87 orbit solution, and 
the squares show the predicted position of the nucleus using the JPL-95 orbit solution (79). Their 
separation, 19.3 arc sec on this date, serves as a scale bar for each of the displayed images. The 
nearly vertical streaks are trails from stars passing through the field that were not completely 
removed during image processing. 

Sun-comet line (the Sun-comet-Earth angle 
was between 74" and 79"), the nongravitational 
acceleration, produced by jetting forces from 
subliming ices, was -3 X to 7 X 
times that of solar gravity (lo), which is an 
order of magnitude larger than the acceleration 
deduced for several fragments observed during 
August 2000 (see later discussion). 

After the reported disintegration of the 
comet's nucleus in late July 2000, we made 
ground-based observations of CLINEAR 
each day during 2 through 5 August 2000, 
using the University of Hawaii 2.2-m tele- 
scope on the Mauna Kea Observatory (II), 
but only R-band images from 4 August are 
discussed here. Although no fragments could 
be detected in these images, we used them to 
construct a model for the production of the 
comet's dust tail (12). From the measured 
celestial position angle of the tail axis on 4 
August (98.0" + 0.2", 52000 equinox), we 
derive that the outburst event producing the 
dust tail peaked on 22.8 2 0.2 July 2000. The 
shape of the tail demonstrates that the event 
had a rapid rise and tapered off more slowly, 
but we have not yet attempted to quantify this 
description. Analysis of the spatial brightness 
profiles along and across the tail shows that 
the position of peak intensity is dominated by 
particles having P = O.Ol,where P is the ratio 
of solar radiation pressure to solar gravity 
(13). This value of P corresponds to particles 
-230 pm in diameter, assuming that their 
density is 0.5 g ~ m - ~ .  We estimate that the 
total R magnitude of the tail is -8.6 2 0.2, 
and from this we derive that the total mass of 
the dust tail is -(4.1 + 0.8) X 10' kg, 
assuming that the particles have a geometric 
albedo of 4% and using a phase correction 
factor of 2 in brightness (14). Our estimate 
depends on the phase-law dependence for the 
dust scattering because the observations were 
conducted at a phase angle of 88.9", and 
extreme choices could change our mass esti- 
mate by a factor of -2 in either direction. We 
have onlv considered the contribution from 
grains having a product of density and diam- 
eter smaller than -2 g cm-2 (p > 6 X lo-'), 
so the actual mass will be larger if pebble- 
sized and larger particles contribute. The 
mass in the dust tail is comparable to the total 
mass of gas released after 21 July 2000 
(-3 X 10' kg) (15, 16). If all of the mass in 
the dust tail were put into a single spherical - - 
object having a de-nsity of 0.5 g cm-3 (17), 
its diameter would be -120 m, which sug- 
gests that the breakup event of 22.8 July 2000 
resulted in the complete disintegration of one 
or more large fragments. 

On 5 August 2000, we observed CLIN- 
EAR with the HST and used the Wide Field 
and Planetary Camera 2 (WFPC2) (18) to 
obtain images of the comet (Fig. 1) at three 
different locations: the Planetary Camera 
(PC) charge-coupled device (CCD) was cen- 

18  MAY 2001 VOL 292 SCIENCE www.sciencemag.org 



C O M E T  C I L I N E A R  

tered on the predicted position of the nucleus 
(19), on a region 80 arc sec tailward of the 
nucleus, and on a location 160 arc sec tail- 
ward. The most prominent optical feature of 
CLINEAR was the tail of dust extending 
antisunward of the predicted position of the 
nucleus, which is also nearly due east. The 
westemmost edge of the tail forms a relative- 
ly sharp tip that could be discerned even 
from modest-sized ground-based telescopes. 
HST's high-spatial-resolution images show 
that the tip actually consists of -12 frag- 
ments, each resembling a miniature comet 
with its own coma and tail. In addition, a few 
fragments lie substantially west of the tip, 
close to the predicted location of the original 
nucleus and in the region where one would 
generally expect to find the most massive 
fragments (19). 

Approximately 37 hours after the first HST 
observations on 5 August 2000, we observed 
C/L.INEAR on 6 August, using the Very Large 
Telescope (VLT) (20). Those-images revealed 
even more fragments (-16) after special im- 
age-processing techniques were applied to en- 
hance the unresolved sources (Fig. 2) (21). 
VLT observations were also made on 9 and 14 
August, but no fragments could be seen in the 
raw images, and image processing did not yield 
any definite detections (20). We estimate that 
the brightest fragment must have faded by a 
factor of - 10 between 6 and 14 August and the 
faintest fragment must have faded by at least a 
factor of -2. 

Because the identifications of the fragments 
from one image to another are sometimes am- 
biguous, we assigned a separate lettering 
scheme for the HST PC image-centered on the 
predicted position of the nucleus, for the HST 
Wide Field Camera (WFC) image that contains 
the tip region (this image was taken -6.5 hours 
after the PC image), and for the VLT image. 
Tentative correspondences were made among 
the fragments (Table 2), and their relative po- 
sitions were plotted (Fig. 3). We identified two 
pairs of fragments that originally might have 
been part of the same object. Assuming that our 
identifications are correct, we measured the in- 
crease in the separation between the pairs over 
the observed time period and applied a model 
(4) to estimate both the separation times and the 
accelerations of the fragments (Table 2). Our 
best fit models indicate that these fragments 
probably separated sometime between late June 
and mid-July 2000 and that their nongravita- 
tional accelerations were -3 X to 5 X 

of the acceleration of solar gravity (10). 
These separation times are earlier than what is 
commonly referred to as the disruption time of 
CLINEAR (i.e., on or about 22 July 2000) and 
indicate that the fragmentation had a progres- 
sive nature extending over a period of at least 1 
month. However, our results do not preclude 
the possibility that many of the fragments were 
produced during the late-July disruption event. 

Table 1. Log of observations. The STlS (9) and the WFPC2 (78) are instruments on the National 
Aeronautics and Space AdministrationIEuropean Space Agency HST. The Tek2K CCD camera was used at 
the University of Hawaii (UH) 2.2-m telescope (7 7). The FORSI was used at the ESO's VLT (20). rh and 
A are the comet's heliocentric and geocentric distances, respectively, and + is the phase angle in degrees 
(Sun-comet-Earth angle). 

Start-stop Observatory/ rh A + Filter1 Exposure times 
dates (UT) instrument (AU) (AU) (deg). grating Is) Comments 

5.78-5.94 Jul 2000 HSTISTIS 0.86 0.82 74.6 F28x50LP 30 X 4 Rising activity; 
C140L 1800,1800, 1440 CO detection 

6.73-6.89 Jul 2000 HSTISTIS 0.85 0.78 76.9 F28xSOLP 30 X 4 Declining activity; 
C230L 1800, 1800, 1440 OH monitoring 

7.66-7.96 Jul 2000 HSTISTIS 0.85 0.74 79.3 F28x50LP 30 X 1 Low activity; 
fragment in tail 

4.25-4.30 Aug 2000 UHlTek2K 0.79 0.66 88.9 R band 90 X 3 Dust tail imaging 
5.17-5.47 Aug 2000* HSTlWFPC2 0.79 0.69 86.0 F675W 1100 X 2,1000 X 2 14 fragments 

2,1100 x 2 
6.98-7.00 Aug 2000 VLTIFORSI 0.80 0.75 81.5 R band 558, 600, 500 2 16 fragments 
9.98-10.00 Aug 2000 VLTIFORSI 0.82 0.86 74.1 R band 400 X 4 Poor conditions; 

5 3 fragments 
14.98-15.00 Aug 2000 VLTIFORSI 0.86 1.04 63.5 R band 500 X 4 No fragments 

*There were paintings at three different locations (79). 

Fig. 2. VLT image of CILINEAR taken on 6.99 August 2000. Three individual images were 
combined and then processed with both unsharp masking and wavelet filtering (27). A t  least 
16 fragments were detected, and they are labeled with their letter names. Celestial north is 
straight up, and east is to the left. The diamond gives the predicted position of the original 
nucleus with the JPL-87 orbit solution, and the square shows the predicted position of the 
nucleus with the JPL-95 orbit solution (19). Their separation was 20.3 arc sec on this date. The 
nearly vertical streaks are trails from stars passing through the field that were not completely 
removed during image processing. 

Fig. 3. Locations of -20 
the CILINEAR frag- 
ments. The relative po- 
sitions (DEC-off, off- 
set in declination from 

3 -lo 

the origin; RA-off, off- 
set in right ascension $ from the arbitrary ori- 0 
gin) of the fragments ? 
are plotted as derived 8 
from the HST PC obser- 10 
vations taken on 5.18 
August 2000 (dia- 
monds), from the HST 
WFC observations tak- -50 4 0  -30 -20 -10 0 10 20 
en on 5.45 August 
2000 (crosses), and 

RA-off (arc sec) 

from the VLT observations taken on 6.99 August 2000 (Letters). Celestial north is straight up, and east 
is to the left. The origin is arbitrarily selected to coincide with fragments B,, B,,,, and GT (the caption 
for Table 2 explains the naming convention). The line connecting the comet and the Sun, as projected 
on the sky, is also shown, and the Sun is to the west. The letters overlap the other symbols in some cases 
(e.g., C, F, G, and H). 
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The accelerations and implied lifetimes (-3 to 
6 weeks) derived by us for the two pairs of 
fragments are consistent with those observed in 
other disrupted comets (4). 

The presence of nongravitational acceler- 
ations, dust comae, and tails for the fragments 
strongly suggests that they were.at least par- 
tially covered with ice and that the sublima- 
tion of this ice carried dust particles away 
from the surface to produce the coma; that is, 
each of the fragments was essentially a min- 
iature comet. Using two different techniques 
that have been employed to extract the mag- 
nitudes of cometary nuclei from WFPC2 im- 
ages of other comets (22, 23), we performed 
a detailed photometric analysis of the spatial 
brightness distribution around each of the 10 
fragments detected in the PC image. The two 
meihods generally yielded consistent results 
for the nuclear magnitudes, and in all cases 

Table 2. ULINEAR fragments. . Fragments of 
ULINEAR were separately detected in images tak- 
en with the WFPC2 in PC mode on 5-August 2000, 
with the WFPC2 in WFC mode on 5 August 2000, 
and with the VLT on 6 August 2000; separate 
letter designation systems have been defined in 
each case. Approximately 16 fragments were de- 
tected in the VLT image, with letter names from A 
through R, but omitting I and 0. Approximately 14 
fragments were detected in the WFC image, with 
letter names from A to 5, but omitting E, F, I, and 
0. Approximately 10 fragments were detected in 
the PC image, with letter names from A to M, but 
omitting D, H, and I. In all cases, the order of the 
letters reflects their astronomical right ascension, 
from west (A) to east (5). m, is the derived R-band 
magnitude of each fragment after removal of any 
coma contribution, and this has been converted to 
an effective spherical diameter (d,), assuming that 
the geometric albedo is 4% and that the bright- 
ness follows a linear phase law of 0.04 mag deg-'. 
The size has been converted to a mass by assum- 
ing that each fragment has a density of 0.5 g 
cm-'. As discussed in the text (254, the sizes and 
masses possibly have large systematic errors. 

we present the average values from these two 
independent techniques (Table 2). An exam- 
ple of the fit with one of the methods (22) is 
shown in Fig. 4. We converted the magni- 
tudes into sizes (24), assuming that the ob- 
jects are spherical, their geometric albedo is 
4%, and their brightness follows a linear 
phase law of 0.04 mag deg-I (mag, magni- 
tudes). The largest objects have effective di- 
ameters of -100 m, with a possible system- 
atic error of a factor of -2 in either direction 
(25). We note that some of the fragments 
appear to have secondary components (e.g., 
B, E, L, and possibly G), and models that 
contain multiple objects provide somewhat 
better fits to the observations in those cases. 
However, the observed signals for the frag- 

- 
W 
a 

Fragment names dN Mass 

PC WFC VLT m" (m) (lo8 kg) 0 

A A B 27.3 50 0.4 0 5 10 15 20 
B B C 26.3 80 1.5* Distance tram nucleus (pixels) 
C C 26.0 100 2.3 
E 26.2 90 1.7 
F 26.8 70 0.8 
C (3 26.1 90 2.0 
1 25.7 110 3.4 
K K K 26.0 100 2.3 
L L L 25.5 120 4.5t 
M M H 26.0 100 2.31 

*Closest to the predicted position of the original 
nucleus. ?Values refer to the brighter component of a 
pair of objeas; possible fragment of A, =-$iC = &,,; 
a = 39 + 8, where a, is the nongravitat~onal acceler- 
a%n of the fragment due to the jetting effect from gases 
and dust leaving its surface, in units of lo-= of the 
acceleration due to solar gravity (10); T,,, = 2 + 6 July 
2000, where T,,, is the estimated date when the frag- 
ment separated from its parent, $Possible fragment 
of BPc = BwFC = C,,,; a,, = 34 + 8: T,,, = 13 + 3 July 
2000. 

Fig. 4. Individual fragment and its spatial bright- 
ness profile. (A) The HST PC image of fragment K, 
with the estimated position of the nucleus 
marked (cross near center of image). (B) The 
spatial brightness profile for the region between 
the dashed lines in (A) (30" acute angle). This 
region is centered on the sunward direction and 
was selected to avoid tailward moving debris. The 
compass shows the directions of celestial north 
and east, and the width of the entire image is 1.87 
arc sec The data and their error bars (la) .are 
plotted along with our best fit  model (22) for the 
nucleus contribution (thin solid curve), the coma 
contribution (dashed curve), and the sum of the 
two (thick solid curve). The nucleus contributes 
about half of the observed signal in the peak pixel, 
and its corresponding R-band magnitude is -26. 
DN. data numbers. 

ments are so faint that further analysis is 
required before any definitive statements can 
be made regarding the multiplicity of the 
fragments. 

Using our size estimates, we calculated the 
masses of the fragments (Table 2), assuming 
that they have a density of 0.5 g cm-3 (1 7). The 
total mass contained in the 10 fragments listed 
in Table 2 is -2 X lo9 kg, which is almost an 
order of magnitude larger than the total mass 
lost from water sublimation after 21 July 2000 
[-3 X 10' kg (15, 16)]. Inclusion of the other 
fragments, and of possible companions to the 
fragments listed in Table 2, will raise the total 
mass of the fragments, but probably not by 
more than a factor of 2. A single spherical 
object having a density of 0.5 g cm-3 and a 
mass of 2 X lo9 ke would have a diameter of 
-200 m, which &sumably is a lower limit 
to the original size of CLINEAR's nucleus. 
Owing to various sources of systematic error 
(25), our estimate for the total mass of the 
fragments is uncertain by about an order of 
magnitude, so we cannot say with certainty 
that most of the mass of CLINEAR ended up 
in the large fragments observed in the HST 
and VLT images. 

A spherical 50-m-diameter object with a 
geometric albedo of 4% and a phase law that 
varies as 0.04 mag deg-I would have an R 
magnitude of 27.6, which means that an in- 
active nucleus of this size would be near the 
detectability limit of the HST and the VLT. 
We note also that 50- to 100-m objects with 
little ice would have low gas production 
rates, so the presence of such bodies does not 
violate the upper limits on gas production in 
August 2000 derived from other observations 
(15, 16). Presumably, objects covering a 
broad range of sizes were produced during 
the breakup of CLINEAR, but our observa- 
tions are mainly sensitive to those at the 
extreme ends of the size spectrum, i.e., to 
micrometer-sized dust and the largest frag- 
ments. Therefore, a substantial fraction of the 
leftover mass from CLINEAR may be in 
intermediate-sized objects, from centimeter- 
sized particles to -50-m objects, that escape 
detection by optical observations. 

Ultraviolet spectra of CILINEAR were ob- 
tained by 8TIS during 5 through 7 July 2000 
(26). We detected emissions from CO and OH 
and fiom these data derive an abundance ratio 
of C O W  5 0.4% (27), which is smaller than 
the values observed in other comets, sometimes 
by more than an order of magnitude (28). CO 
has a sublimation temperature under solar neb- 
ula conditions of -25 K (29) and has frequent- 
ly been invoked both as the source of cometary 
activity at large heliocentric distances and as a 
possible trigger for short-term cometary activity 
outbursts. The lack of appreciable amounts of 
CO in the nucleus of CLINEAR apparently 
rules out any important role for CO in the 
comet's fragmentations and temporal outbursts. 
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Thus. we must look to other vhvsical mecha- gaseous emissions in the bandpass of the filter. The point (-27.10),A0 is the geometric albedo, and C$ is the phase . - 
nismi, such as fast rotation (30) or collisions spread function of the PC has a full width at half max- angle (Sun-Somet-~arth angle). 

imum of -0.070 arc sec. which projects to 40 km at a 25. A factor of 2 change in the phase law, which probably 
with asteroidal debis (3113 possibly eeocentric distance of 0.8 AU. The resolution achieved defines the extreme limits. ~roduces a factor of -2 - 
with increased activity associated with the corn- during the CILINEAR observations was similar, as HST change in the derived size. ~ l i h o u ~ h  the albedo has not 

et's approach to penhelion, as possible triggers 
for the unraveling of CLINEAR. 
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