
(RNA editing) can generate many more pro- 
teins than the number encoded by genes (9). 
In Drosophila, alternative splicing and RNA 
editing theoretically could generate 
1,032,192 rnRNA transcripts (each encoding 
a slightly different protein) from the single 
para gene, which encodes a sodium channel. 
In yeast, only three genes are known to be al- 
ternatively spliced whereas in the human, at 
least 35% of the gene transcripts undergo al- 
ternative splicing. Unfortunately, little is 
known about the proteins that regulate alter- 
native splicing, although splicing is known to 
be location- and time-specific (9). This sug- 
gests that the protein complex carrying out 
the splicing (the spliceosome) may itself be 
under strict regulation, perhaps through its 
interactions with other regulatory proteins. 

How does the genomic complexity of 
plants compare with that of animals? Plants 
have a surprisingly large number of tran- 
scription factors-more than 1500 genes 
(5% of the genome) encode transcription 
factors, and half of these are plant-specific 
(10).For comparison, the worm genome has 
500 transcription factor genes, the fly 
genome about 700, and the human genome 
more than 2000 (7). The wide variety of 
plant transcription factors could be ex- 
plained by a unique feature of plants: their 
complex secondary metabolism. As many as 
25% of all plant genes are associated with a 
unique array of secondary metabolites not 
found in animals (the total number of plant 
secondary metabolites is close to 50,000, al- 
though each plant species produces only a 
fraction of these). The expression of genes 
associated with secondary metabolism is 
both tissue- and time-specific ( l l ) ,  which 
makes the large number of transcription fac- 
tors comprehensible. Given their multitude 
of transcription factors, should plants be 
considered more complex than vertebrates? 
Obviously, the answer is no, but the reason 
why requires a closer look at the complexity 
of vertebrate organ systems. 

With a limited number of genes, verte- 
brates manage to code for two highly complex 
subsystems that are specialized for informa- 
tion accumulation, storage, and retrieval: 
namely, the immune system and the nervous 
system. Both systems operate on a generative 
basis, that is, they can store huge amounts of 
information based on a fixed set of rules. 
These rules reside in variation-generating 
mechanisms (such as the reshuffling of im-
munoglobulin genes) and internal selective fil-
ters (12). In the case of the vertebrate immune 
system, reshuftling of immunoglobulin genes 
produces an enormous variety of antibodies. 
An internal selective filter then recognizes 
cells producing antibodies against self anti- 
gens, weeds them out, and destroys them. Al-
though less well characterized the vertebrate 
nervous system contains similar Darwinian el- 

ements. During development, a large surplus 
of nerve cells and their myriad connections are 
produced, h m  which only those that best in-
nervate a given temtory are retained (12). The 
immune and nervous systems might yield 
clues as to how an extremely complex and 
highly connected system could develop from a 
limited number of genetic instructions. Where- 

u  

as vertebrates have delegated a large part of 
their complex* to their immune and nervous 
systems, plants seem to compensate for their 
lack of generative systems by depending on 
gene regulation and synthesis of new sec- 
ondary metabolites to generate diversity. 

So, we need to distinguish between two 
forms of genomic complexity: one measured 
by the number of genes and the other by the 
connectivity of gene-regulation networks. 
The complexity of organisms (in terms of 
morphology and behavior) correlates better 
with the second definition. Delegated com- 
plexity, achieved by genetically encoded in- 
formation-processing systems such as the 
nervous and immune systems of vertebrates, 
adds another dimension to biological com- 
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plexity. With the availability of more and 
more completed genome sequences, bioin- 
formatics is sure to yield additional measures 
of complexity. We will then be able to devise 
new ways to quantify these measures of bio- 
complexity. 
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How Viruses Spread Among  
Computers and People  

Alun L. Lloyd and Robert M. May 

The Internet and the world wide web 
(WWW) play an ever greater part in 
our lives. Only relatively recently, 

however, have researchers begun to study 
how the patterns of connectivity in these 
networks affect the spread of computer 
viruses within them (1, 2) and their ability 
to handle perturbation or attack (3). Many 
models for communication can be formulat- 
ed in terms of networks, in which nodes rep- 
resent individuals (such as computers, web 
pages, people, or species) and edges repre- 
sent possible contacts between individuals 
(network links, hyperlinks, social or sexual 
contact, and species interactions). The study 
of communication networks therefore has 
interesting parallels both with conventional 
epidemiology (4, 5) and with the ability of 
ecosystems to handle disturbances. 

In a recent paper in Physical Review 
Letters, Pastor-Satorras and Vespignani (6) 
explore a dynamical model for the spread 
of viruses in networks of the kind found in 
the Internet and WWW (7, 8). In striking 
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contrast with the usual models for the 
spread of infection in human and other 
populations, they find no threshold for 
epidemic spread: Within the observed 
topology of the internet and WWW, virus- 
es can spread even when infection proba- 
bilities are vanishingly small. They also 
find that, in its early phase, the epidemic 
spreads relatively slowly and nonexponen- 
tially, again in contrast with the initial ex- 
ponential behavior in conventional epi- 
demics. These are notable findings, and 
the authors suggest they may be relevant 
to other types of social networks. 

The importance of spatial structure for 
disease transmission has long been recog- 
nized (9).Locally structured networks of- 
ten have many intermediates in paths be- 
tween any given pair of individuals. They 
can also exhibit clique behavior, with pairs 
of connected individuals sharing many 
common neighbors, reducing the opportu- 
nities for secondary infection events. As a 
result, diseases may spread more slowly 
when contact is mainly local, compared 
with well-mixed situations. Conversely, 
earlier studies showed that even infrequent 
long-distance infection events can enhance 
disease spread (9). This fore- 
shadowed some aspects of recent work on 
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"small world" networks ( I  0) and on the re- an infected individual in a wholly susceptible 
cent spread of foot and mouth disease in population-assuming a homogeneous net- 
the UK (11). work (that is, all nodes are assumed to interact 

In contrast to such results, which derive with the same number of other nodes, namely 
from the spatial structure of networks, Pas- the average, 2m). 
tor-Satorras and Vespignani's results largely However, spurred largely by the need to 
derive from the scale-free character of the in- understand the spread of human irnmunodefi- 
ternet and WWW (6). Scale-free networks ciency virus (HIV) within complex networks 
(see the figure) can arise when a network of sexual partnerships, traditional epidemiolo- 
grows through new nodes being linked pref- gy has advanced well beyond homogeneous 
erentially to the most highly connected exist- models. The basic reproductive number, Ro, 

for HIV and other infections spread by binary 
contacts within complex networks, includ- 

ing those studied in (6), is Ro = po[l + 
(CV)*] (5, 13, 14), where CV denotes 

the coefficient of variation (the stan- 
dard deviation divided by the mean) 

of the node-connectivity distribu- 
tion. This expression shows that 
heterogeneity within the network 
leads to an increase in the basic 
reproductive number. The rea- 
son for the absence of a thresh- 
old for the spread of infection 
in Pastor-Satorras and Vespig- 
nani's study is now clear: 
Their scale-free distribution 
has infinite variance, and 
hence Ro always exceeds 
unity, no matter how small 
the homogeneously approxi- 
mated quantity po may be. 

The nonexponential na- 
ture of the initial spread of 
infection has also been not- 

No matter of scale. Example of a scale-free network, consisting of ed in e ~ i -  
100 nodes, generated with the algorithm of Barabesi and Albert demiO1Ogical models for 
(12). In order of increasing connectivity, the nodes are colored red, Hm (13). The initial expo- 
green, blue, and yellow, with the most highly connected nodes col- nential epidemic phase is 
ored magenta. Note the small number of highly connected nodes; rapidly curtailed because 
the majority of nodes have few connections. the highly active classes 

quickly saturate with infec- 
ing nodes (12). The probability for a node to tion, giving way to a more gradual in- 
be connected to k other nodes obeys a power crease, with new infections largely coming 
law distribution, P(k) - ky. In the case of from the slower dissemination of infection 
the Internet and WWW, the observed expo- to less active classes. 
nent y lies between 2 and 3 (7,8). In SIS models, the fraction infected at 

Pastor-Satorras and Vespignani simulate any one time comes almost entirely from 
the spread of computer viruses with a "suscep- continual reinfection of the most highly 
tible-infected-susceptible" (SIS) model, in connected nodes. In reality, these are ex- 
which susceptible individuals acquire infection actly the sophisticated nodes most likely to 
at a rate p upon contact with an infected node avoid this fate. Moreover, for many com- 
and subsequently m e r  from the infected to puter viruses, infected nodes are likely to 
the susceptible state after an average time D. recover to an immune, rather than a sus- 
In their scale-fice network, y equals 3 (12) and ceptible, state (by using antiviral software 
the least connected nodes have m connections. or simply losing susceptibility to "I LOVE 
The average connectivity, <k,, is then 2m. The YOU" enticements). In this case, the 
authors show that the results obtained with this somewhat more complicated class of "sus- 
model agree with observed patterns of viral ceptible-infected-recovered" (SIR) epi- 
spread and persistence. The system eventually demiological models is more appropriate. 
settles to a steady state, in which the fraction In SIS situations, we can observe endemic 
of infected nodes is y = 2 exp(-2/po), where po levels of infection in a closed population, 
= P W .  Epidemiologists would call po the whereas in SIR models, the epidemic waxes 
"basic reproductive number'' for the disease- and then wanes as the progressing epidemic 
the average number of infections produced by reduces the number of susceptible nodes. 

Again, analytic and simulation-based results 
on the spread of sexually transmitted diseases 
within heterogeneously connected networks 
are informative here. For instance, Anderson 
and May (5, 13) have derived formulas for 
the fraction of the population, I, ever infected 
in an SIR epidemic. Interestingly, for Pastor- 
Satorras and Vespignani's scale-free distribu- 
tion, this proportion is of much the same 
form as the asymptotic fraction infected in 
the SIS model: I I: C exp(-2/po) (a detailed 
calculation shows that the constant C = 3.05). 
Note that in those circumstances where po is 
small, so that Ro exceeds unity by virtue of 
the infiite variance in the contact distribu- 
tion, the fraction infected (both in the steady 
state for SIS and in total as the epidemic 
sweeps through for SIR) will be very small. 

At first sight, it might seem as if the ex- 
treme heterogeneity exhibited by the scale- 
free networks of Pastor-Satorras and Vespig- 
nani makes them poor models for human in- 
teractions. Complicated networks of social 
interactions cannot be treated as if they were 
homogeneous (5, 14), but heterogeneity is 
often low hi networks describing friendships 
between individuals (15), which might be 
appropriate models for diseases passed by 
casual social contact (or computer viruses 
that use e-mail address lists found on infect- 
ed machines). Pastor-Satorras and Vespig- 
nani's results may be less appropriate for 
diseases passed by social contact. 

On the other hand, sexual partnership net- 
works are often extremely heterogeneous b e  
cause a few individuals (such as prostitutes) 
have very high numbers of parhers. Pastor- 
Satorras and Vespignani's results may be of 
relevance in this context. The study highlights 
the potential importance of studies on com- 
munication and other networks, especially 
those with scale-free and small world proper- 
ties, for those seeking to manage epidemics 
within human and other animal populations. 
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