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tion with 0, and CO, and temperature control 
(Ruskinn Technologies, Leeds, UK). RCCCVHL.HA, la- 
beling conditions, and coimrnunoprecipitation assays 
have been described previously (11). We used 12.5 
p M  MC132 for proteasomal inhibition. For hypoxic 
harvest, cells were lysed in the workstation with 
buffers deoxygenated in the chamber overnight. For 
standard harvest, the cells were removed from the 
chamber after hypoxic exposure, before cell lysis. 

19. pcDNA3.VHL.HA and pcDNA3,HIF-la were used to 
program TNT reticulocyte lysate (Promega). When 
programming in hypoxia, the reaction mix was pre- 
incubated in the workstation for 10 min before ad- 
dition of the DNA template. An aliquot was removed 
from the workstation for transcriptionltranslation 
under ambient oxygenation. 

20. Proteins were expressed in rabbit reticulocyte or wheat 
germ IVTT systems (Promega), in insect cells with the 
use of a baculoviral system, and in bacteria. IVTTs were 
programmed with pcDNA3-based vectors encoding sub- 
domains of HIF-la or pVHL.HA as indicated. For recom- 
binant baculoviral expression, Sf9 insect cells were in- 
fected with pFastBac1 vectors (CibcoBRL) encoding 
PK.HIF-la(344-698) and HIF-la(1-826).PK and harvest- 
ed 60 hours after infection. In bacteria, pVHL was ex- 
pressed as glutathione-S-transferasetogether with elon- 
gins B and C (CST-VBC complex) and HIF-la as a 
maltose-binding protein fusion [pMAL.HIF-la(344-
698)j. 

21. pCal1HIF-la549-582lVP16 	was used to program re- 
ticulocyte lysate in the presence of unlabeled methi- 
onine. The fusion protein was immunoprecipitated 
with beads precoated with anti-Gal4 RK5C1 (Santa 
Cruz). lmmunoprecipitated HIF-la fusion was 
washed with NETN buffer [50 mM tris (pH 7.5). 150 
mM NaCl, 0.5 mM EDTA, and 0.5% NP-401, and the 
beads were incubated with cell lysate in hypotonic 
extraction buffer [HEB: 20 rnM tris (pH 7.9, 5 mM 
KCI, 1.5 mM MgCI,, 1 mM dithiothreitol] for 60 min 
at 22°C. The beads were then washed with NETN 
containing DFO (100 pM) and incubated for 2 hours 
at 4°C with 35S-methionine-labeled pVHL.HA. 

22. HIF-la(1-826).PK 	 or PK.HIF-la(344-698) produced 
from baculoviruses was immunoprecipitated with anti- 
PK (Serotec). Bead-bound immunoprecipitates were 
incubated under test conditions and assayed for 
pVHL.HA capture. 

23. D. R. Mole, data not shown. 
24. For peptide-blocking assays, peptides were preincu- 

bated in cell extract or other conditions for 60 min at 
30°C and then added (final concentration. 1 pM) to 
NETN buffer containing a mixture of HIF-la and 
pVHL.HA. 

25. Samples for mass spectroscopic analyses were biotinyl- 
ated synthetic peptides 19:W (HIF-la residues 556 to 
574) or 34 :W (HIF-la residues 549 to 582) or bacu- 
loviral PK-tagged HIF-la. After modification by mam- 
malian cell lysates, the material was purified by strepta- 
vidinlbiotin capture (synthetic peptides) or anti-PK im- 
munoprecipitation and SDS-polyacrylamide gel electro- 
phoresis (SDS-PACE) (baculoviral HIF). Proteolytic 
digestion was performed on the beads (synthetic pep- 
tides) or in-gel with trypsin and V8 protease at pH 7.8 
or V8 protease at pH 4.5. Samples were lyophilized and 
dissolved in aqueous 0.1% trifluoroacetic acid. Peptides 
were concentrated, desalted on a 300-pm inside diam- 
eterl5-mm length C18 PepMap column (LC Packings, 
San Francisco. CA), and eluted with 80% acetonitrile. 
The high-performance liquid chromatography (CapLC. 
Waters, Milford. MA) was coupled through a Nano-LC 
inlet to a Q-TOF mass spectrometer (Micromass. 
Manchester, UK) equipped with a nanoelectrospray Z-
spray source. The eluted peptide mixture was analyzed 
by tandem mass spectrometric sequencing with an 
automated MS-to-MSIMS switching protocol. Online 
determination of precursor-ion masses was performed 
over the mlz range from 300 to 1200 atomic mass units 
In the positive charge detection mode with a cone 
voltage of 30 V. The collision-induced dissociation for 
peptide sequencing by MSIMS was performed with 
argon gas at 20 to 40 eV and a three-dimensional 
quadrupole resolution. 

26. K. I. Kivirikko. R Myllyla, in The Enzymology of Post- 
translational Modification of Proteins. R. B. Freeman, 
H. C. Hawkins, Eds. (Academic Press. London. 1980). 
pp. 53-102. 

27. In pVHL capture assays with biotinylated peptides, 
the peptide was preincubated with cell extract or 
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to bind 35S-labeled pVHL.HA. 

28. K. I. Kivirikko, 	J. Myllyharju, Matrix Biol. 16, 357 
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A quantum system will stay near its instantaneous ground state if the Ham- 
iltonian that governs its evolution varies slowly enough. This quantum adiabatic 
behavior is the basis of a new class of algorithms for quantum computing. We 
tested one such algorithm by applying it to randomly generated hard instances 
of an NP-complete problem. For the small examples that we could simulate, the 
quantum adiabatic algorithm worked well, providing evidence that quantum 
computers (if large ones can be built) may be able to outperform ordinary 
computers on hard sets of instances of NP-complete problems. 

Although a large quantum computer has yet quantum mechanics, are well established. It is 
to be built, the rules for programming such a already known that quantum computers could 
device, which are derived from the laws of solve problems believed to be intractable on 
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classical (i.e., nonquantum) computers. An 
intractable problem is one that necessarily 
takes too long to solve when the input gets 
too big. More precisely, a classically intrac- 
table problem is one that cannot be solved 
using any classical algorithm whose running 
time grows only polynomially as a function 
of the length of the input. For example, all 
known classical factoring algorithms require 
a time that grows faster than any polynomial 
as a function of the number of digits in the 
integer to be factored. Shor's quantum algo- 
rithm for the factoring problem ( I ) can factor 
an integer in a time that grows (roughly) as 
the square of the number of digits. Thls ralses 
the question of whether quantum computers 
could solve other classically difficult prob- 
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lems faster than classical computers. 
Beyond factoring, there is a famous col- 

lection of problems called NP-complete [see, 
for example, (2)]. Hundreds of problems are 
known t i  be NP-complete-for example, (a 
variant of) the Traveling Salesman prob- 
lem-and they are all related in the following 
sense: If someone finds a polynomial-time 
algorithm for one NP-complete problem, then 
this algorithm could be used as a subroutine 
in programs that would then solve all other 
NP-complete problems in polynomial time. 
That no one has succeeded in finding a clas- 
sical polynomial-time algorithm for any of 
these problems is strong evidence for the 
intractability of all of them. On the other 
hand, no one has been able to prove that a 
polynomial-time algorithm cannot be con-
structed for any ~ ~ - c o m ~ l e t e  problem. Set- 
tling the question of whether a polynomial- 
time algorithm does or does not exist for an 
NP-complete problem is one of the outstand- 
ing problems of classical computer science. It 
is also an open question whether an NP-
complete problem could be solved in polyno- 
mial time on a quantum computer. 

Here, we describe a recently developed ap- 
proach to quantum computation based on quan- 
tum adiabatic evolution [(3); for related ideas, 
see (#)I. We apply the quantum adiabatic algo- 
rithm to a specific NP-complete problem, Exact 
Cover. A decisive mathematical analysis of this 
quantum adiabatic evolution algorithm has not 
been possible. Instead, we resort to numerical 
simulation of the running of the quantum algo- 
rithm (5). Each time we do the simulation, we 
use as input a randomly generated instance of 
Exact Cover. The lengths of these inputs are 
necessarily small because simulating a quantum 
computer on a classical computer requires 
memory that grows exponentially in the length 
of the input. On these small inputs our data look 
promising. For our randomly generated instanc- 
es of Exact Cover, we find that the quantum 
algorithm succeeds in a time that grows only 
quadratically in the length of the input. 

Saying that an algorithm solves a problem 
in polynomial time means that the algorithm 
succeeds in polynomial time on every possi- 
ble input. On the other hand, an algorithm 
may succeed in polynomial time on a large 
set of inputs but not on all. This has led to 
efforts to identify sets of instances that are 
hard for particular classical algorithms. Re- 
searchers working on the NP-complete prob- 
lem 3-SAT (Three-Satisfiability) have identi- 
fied a set of instances that are hard for stan- 
dard classical search algorithms [(6);see also 
(7) and references therein]. Although the 
quantum adiabatic evolution algorithm could 
be applied to 3-SAT, we find it more conve- 
nient to study Exact Cover. Our instances of 
Exact Cover are generated from a set that we 
believe to be classically intractable for suffi- 
ciently large inputs. Using a running time that 

grows only quadratically in the length of the 
input, the quantum adiabatic algorithm solves 
the Exact Cover instances we randomly gen- 
erated. Again, because of the space require- 
ments inherent in simulating a quantum com- 
puter, these instances are necessarily small. 
However, if classical algorithms indeed re- 
quire exponential time on this set and the 
quantum quadratic behavior actually persists 
for large instances, then quantum computers 
could outperform classical computers on ran- 
domly generated hard instances, although not 
necessarily in the worst case. 

We now define the NP-complete problem 
Exact Cover [see, for example, (2)]. Consider 
n bits z,, z,, . . . ,z, each of which can take 
the value 0 or 1. An n-bit instance of Exact 
Cover is built up from clauses, each of which 
is a constraint imposed on the values of three 
of the bits. If a given clause involves the three 
bits labeled i, j, and k, then the constraint is 
that one of the three bits must have the value 
1 and the other two must have the value 0. An 
n-bit instance of Exact Cover is a list of 
triples (i, j, k) indicating which groups of 
three bits are involved in clauses. The prob- 
lem is to determine whether there is some 
assignment of the n-bit values that satisfies 
all of the clauses. Given an assignment of 
values for z,, z,, . . . ,z,, we can easily check 
whether the assignment satisfies all of the 
clauses. But determining whether at least one 
of the 2" assignments of z,, z,, . . . ,z ,  satis-
fies all the clauses is in fact an NP-complete 
problem. 

All quantum systems evolve in time ac- 
cording to the Schrodinger equation 

where I+(t)) is the time-dependent state vec- 
tor and H(t) is the time-dependent Hamilto- 
nian operator. A quantum computer algo- 
rithm can be viewed as a specification of a 
Hamiltonian H(t) and an initial state I+(O)). 
These are chosen so that the state at time T, 
j+(T)), encodes the answer to the problem at 
hand. 

In designing our quantum algorithm we take 
advantage of the quantum adiabatic theorem, 
which we now explain. At time t, the Hamilto- 
nian H(t) has an instantaneous ground state 

which is the eigenstate of H(t) with the 
lowest energy. Adiabatic evolution refers to the 
situation where H(t) is slowly varying. Suppose 
the quantum system starts at t = 0 in the ground 
state of H(O), that is, j$g(0)). The adiabatic 
theorem says that if H(t) varies slowly enough, 
then the evolving state vector l+(t)) will remain 
close to the instantaneous ground state l+&t)). 
[For a more precise discussion of the adiabatic 
theorem, see (3).] 

To specify our algorithm we must give 
H(t) for 0 5 t 5 T, where T is the running 
time of the algorithm. We choose H(t) so that 

the ground state of H(0) is known in advance 
and is easy to construct. For any instance of 
the problem under study (Exact Cover in this 
case), there is a Hamiltonian, H,, whose 
ground state encodes the solution. Although 
it is straightforward to construct H,, finding 
its ground state is computationally difficult. 
We take H(T) = H,, which means that 
I+JT)) encodes the solution. For intermedi- 
ate times, H(t) smoothly interpolates between 
H(0) and H(T) = H,, say by taking 

We start with the quantum system in the 
known ground state of H(0). If the running 
time T is large enough, H(t) will indeed be 
slowly varying, and by the adiabatic theorem 
the final state reached, J+(T)), will be close to 
I4Jg(T)). 

The state vector of the quantum computer 
evolves in a Hilbert space of dimension 2". 
We take as a basis the 2" vectors 

where each zi = 0 or 1. This n-qubit Hilbert 
space can be realized as a system of n spin-% 
particles, where lzi = 0) corresponds to the ith 
spin being up in the z-direction and lzi = 1) 
corresponds to spin down in the z-direction. For 
H(0) we couple a magnetic field in the x-direc- 
tion to each quantum spin. [Specifically, the 
strength of the field at each site is equal to the 
number of clauses that contain the bit. Thus, 
H(0) is instance-dependent; see (3).] The 
ground state of the ith qubit corresponding to 
spin aligned in the x-direction is 

The ground state of H(0) for the n-qubit 
quantum system is therefore 

where the sum is over all 2" basis vectors. 
This means that I \Clg(O)), which we take to be 
the starting state of our algorithm, is a uni- 
form superposition of states corresponding to 
all possible assignments of bit values. 

To define H, = H(T), we first define a 
classical energy function h(z,, z,, . . . , zn) 
that is a sum of energy functions hJzt, z,, z,) 
where i, j, and k are the labels of the bits 
involved in clause C. It costs energy to vio- 
late clause C: 

0 clause C satisfied 
h~ '1. = [ 1 clause C violated ( 6 )  

Now let 

h = x h c  (7) 
C 


which for any bit assignment z,, z,, . . . ,z, is 
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equal to the number of clauses that the as- Fig. 1. Each circle is 60 

signment violates. We turn this classical en- 	 the median time t o  55 

ergy function into a quantum operator, diag- 	 achieve a success 

onal in the =-basis: 	 probability of 118 for 

75 USA instances. m e  
 z: 


HPlzI)l=2). . . lz,) = 	 error bars give 95% B 

confidence limits for 2 40 


I I . I (8) each median. The solid 2 ,j

This means that the ground state of H, cor- line is a quadratic f i t  


responds to the bit assignment that violates t o  the data. The bro- $ 30 
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one assignment minimizes the number of vi- 	 line, is the quadratic 
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2 - New Quadratic Fir 
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the computational problem. Number of Bits 

At time T, we measure the state 1+(T)) in 
the basis of (Eq. 3). This will produce a string dence that the quantum algorithm runs faster In Fig. 1, the circles represent the median 
z,, z2, . . . , zn of 0's and 1 's. This string can on instances with more than one satisfying time to achieve probability 118 for 10 5 n 5 20. 
be quickly checked to see whether it satisfies assignment (8) . We also have evidence that The error bars give 95% confidence limits on 
all of the clauses. Note that if we run the the quantum algorithm works well on in- the medians. The solid line is a quadratic fit to 
quantum algorithm again [with the same in- stances with no satisfying assignment, in the data. In (5)we obtained corresponding data 
stance, starting state )$(0)) and running time which case the algorithm produces an assign- for 7 5 n 5 15, and the dashed line is the 
TI we end up in the same quantum state ment that violates the minimal number of quadratic fit to those data. The limited power of 
I+(T)). The probability of obtaining a satis- clauses. Thus, the restriction to a USA ap- classical computers makes it impractical to go 
fying assignment depends only on I$(T)), pears to restrict us to the most difficult cases even a few bits beyond 20. so further numerical 

The adiabatic theorem ensures that the for the quantum algorithm. study will not decisively determine how the 
quantum adiabatic evolution algorithm will With the number of bits fixed to be n, we median running time grows with the number of 
produce the desired state that encodes the generate USA instances of Exact Cover as fol- bits. However, it is possible that the data up to 
solution to the instance of Exact Cover if the lows. We pick three distinct bits at random, 20 bits already reveal the asymptotic perfor- 
running time T is long enough. Determining uniformly over the integers from 1 to n. We mance of the algorithm. 
how long is long enough to produce a rea- then have a formula with one Exact Cover To specify the algorithm, we want a run- 
sonably large success probability is the key to clause. We add clauses one at a time by piclung ning time, set in advance, that depends only 
determining the potential usefulness of the new sets of three bits. After each clause is on the number of bits and not on the instance 
algorithm. For certain specialized examples, added we calculate the number of satisfying being considered. We propose running the 
we know that the required running time assignments, which always decreases (or stays quantum algorithm for a time T = T(n) that is 
grows only as a polynomial in the number of the same). If the number of satisfying assign- equal to the quadratic fit to the median time 
bits (3). But addressing the general case of all ments is reduced to just 1, we stop and accept required to achieve probability 118, the solid 
instances of Exact Cover is beyond our ana- the instance. If the number of satisfying assign- curve shown in Fig. I .  To test the algorithm 
lytical abilities. Here we report on a numer- ments drops from more than 1 to 0 without at the proposed running time, we generated 
ical study of the running time needed to solve hitting 1, we reject the instance and start again. 100 new USA instances of Exact Cover. at 
a randomly generated set of Exact Cover With this procedure, the number of clauses is each value of n between 10 and 20, and ran 
instances. not a fixed function of the number of bits, but the simulation on each instance with I' -

To simulate the quantum computer, we rather varies from instance to instance. These T(n). In Fig. 2, the circles show the median 
numerically integrate the Schrodinger equa- instances, on average, have about as many probability of success at each n. Not surpris- 
tion (Eq. 1). For an n-qubit quantum system, clauses as bits. ingly, these are close to 118. We also show 
the state vector $(t)) has 2" complex com- By the adiabatic theorem, the probability the 10th-worst and worst probability fbr each 
ponents. For n = 20, this means numerically of finding the satisfying assignment ap- n. The good news for the quantum algorithm 
integrating a differential equation with proaches 1 as the running time approaches is that these do not appear to decrease appre- 
2,097,152 real variables. This is as large a infinity. We are, of course, forced to settle for ciably with n. 
system as we could handle with our computer a finite running time and a probability less We also generated 1000 new USA in- 
resources in a few months of running. than 1. We have (somewhat arbitrarily) stances of Exact Cover at both 16 and 17 bits. 

Because the number of bits in our instances picked a success probability of 118, which, Figure 3 shows the histograms of the success 
of Exact Cover is never more than 20, we can for n 2 10, is much larger than 1/2", the probability when the instances are nln at 
always determine whether the instance has sat- probability that a random bit assignment is T(16) and T(17). respectively. The histo-
isfying assignments and what they are. We do the satisfying assignment. For each number grams indicate that a USA instance with a 
this by exhaustively checking all of the bit of bits n between 10 and 20, we generated 75 success probability below 0.04 is very unlike- 
assignments, whch takes virtually no time on a USA instances of Exact Cover. For each val- ly to be generated. 
classical computer. The present report concerns ue of n ,  we determined the median time If an algorithm (classical or quantum) suc- 
randomly generated instances of Exact Cover required to achieve a success probability of ceeds with probability at least p,  then n~nning 
with a unique satisfying assignment (USA) be- 1%. (Because this is a numerical study, we the algorithm k times gives a success proba- 
cause we believe that these are the most diffi- actually hunted for a time that gives a prob- bility of at least 1 - ( 1  - p)h.  For example. 
cult for the quantum algorithm. We have evi- ability between 0.12 and 0.13.) if p = 0.04. then 200 repetitions of the algo- 
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rithm gives a success probability of better 
than 0.9997. Suppose that as the number of 
bits increases, it remains true that almost all 
USA instances (generated as described 
above) have a success probability of at least 
0.04 at the quadratic running time T(n). Then 
any n-independent desired probability of 
success can be achieved with a fixed number 
of repetitions. 

If the behavior we have seen up to 20 bits 
persists for all values of n, then we have 
identified a set of instances on which the 
adiabatic algorithm performs well. There is 
also evidence that this set is hard for classical 
algorithms. Most of the instances we have 
generated lie near the "phase transition" for 
Exact Cover. The phase transition region 
consists of instances with the number of 
clauses chosen so that half of the instances 
have one or more satisfying assignments. For 
3-SAT, an NP-complete problem closely re- 
lated to Exact Cover, there is evidence that 
the hard instances for classical algorithms are 
located at the phase transition (7). 

In previous work (3),quantum adiabatic 
evolution was studied analytically on certain 
sequences of instances of Satisfiability where 
the clauses involve at most two bits. Each of 
these sequences has enough structure to make 
it possible to determine the required running 
time for any number of bits. For each case 
considered, the quantum adiabatic algorithm 
succeeds in a time that grows only polyno- 
mially in the number of bits. Of course, the 
structure of those instances makes it possible 
to determine the satisfying assignment by 
inspection, so these instances are certainly 
easy for some classical algorithms. 

In (3) and (5) the quantum adiabatic algo- 
rithm was also applied to the problem of un- 
structured search (9). This problem can be cast 

as a restricted form of Satisfiability where each 
instance has a single clause that involves all of 
the bits and determines a USA. In this case the 
required running time is provably exponential 
in the number of bits even in the quantum case 
(10). This exponential behavior is indeed clear- 
ly seen in the data out to 14 bits in the numer- 
ical simulation of quantum adiabatic evolution 
presented in (5). 

We have also been looking for a structured 
sequence of instances of Exact Cover that may 
be difficult for the quantum adiabatic algorithm. 
We have a candidate sequence where the suc- 
cess probabilities drop sharply as a h c t i o n  of 
the number of bits when the algorithm is run at 
the quadratic fit shown in Fig. 1. We have 
experimented with ad hoc modifications of the 
quantum algorithm that increase the success 
probability for this sequence. In any case, se- 
quences of structured instances have little bear- 
ing on the performance of the quantum algo- 
rithm on randomly generated sets, but are rele- 
vant to discussions of whether this algorithm 
(or a modified version) could solve an NP-
complete problem outright. 

The quantum adiabatic evolution algorithm 
operates in continuous time by evolving a quan- 
tum state according to the Schradinger equation 
(Eq. 1). In the conventional quantum comput- 
ing paradigm, an algorithm consists of a se- 
quence of discrete unitary transformations. Al-
though the adiabatic time evolution can be well 
approximated by a sequence of discrete unitary 
steps (3),we see no advantage in this reformu-
lation. In fact, continuous time evolution may 
offer an alternative model for the design of a 
quantum computer. 

Quantum computation by adiabatic evolu- 
tion works by keeping the quantum state close 
to the instantaneous ground state of the Hamil- 
tonian that governs the evolution. This suggests 

that a device running the quantum adiabatic 
algorithm should be kept at a low temperature 
to reduce unwanted transitions out of the 
ground state. Conventional quantum computing 
does not take place in the ground state, and 
decohering transitions caused by interactions 
with the environment are a major impediment 
to current efforts to build a large-scale quantum 
computer. The quantum adiabatic algorithm 
running on a cold device may be more fault 
tolerant than the implementations of discrete- 
step quantum computation usually envisioned. 

Quantum computation by adiabatic evolu- 
tion applied to a wide variety of combinatorial 
search problems [see, for example, (II)] will 
succeed if the running time is long enough. We 
have seen evidence that for our randomly gen- 
erated small instances of Exact Cover, the re- 
quired running time grows slowly as a function 
of the number of bits. It is possible that the slow 
growth we have already seen indicates the true 
asymptotic behavior of the algorithm when ap- 
plied to randomly generated hard instances of 
Exact Cover. If this quantum adiabatic algo- 
rithm does actually outperform known classical 
algorithms, we would have reason to eagerly 
await the construction of a quantum computer 
capable of running it. 
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Observation of Vortex Lattices 
in Bose-Einstein Condensates 

J. R. Abo-Shaeer. C. Raman, J. M. Vogels, W. Ketterle 

Quantized vortices play a key role in  superfluidity and superconductivity. We 
have observed the formation of highly ordered vortex lattices in a rotating 
Bose-condensed gas. These triangular lattices contained over 100 vortices with 
lifetimes of several seconds. Individual vortices persisted up t o  40 seconds. The 
lattices could be generated over a wide range of rotation frequencies and trap 
geometries, shedding light on the formation process. Our observation of dis- 
locations, irregular structure, and dynamics indicates that gaseous Bose-Ein- 
stein condensates may be a model system for the study of vortex matter. 

The quantization of circulation has a profound 
effect on the behavior of macroscopic quantum 
systems. Magnetic fields can penetrate type-I1 
superconductors only as quantized flux lines. 
Vorticity can enter rotating superfluids only in 
the form of discrete line defects with quantized 
circulation. These phenomena are direct conse- 
quences of the existence of a macroscopic 
wavefunction. the phase of which must change 
by integer multiples of 2 n  around magnetic 
flux or vortex lines. In superconductors, mag- 
netic flux lines arrange themselves in regular 
lattices that have been directly imaged (I). In 
superfluids, direct observation of vortices has 
been limited to small arrays (up to 11 vortices), 
both in liquid 4He (2) and, more recently, in 
rotating gaseous Bose-Einstein condensates 
(BECs) (3, 4). 

We report the observation of vortex lat- 
tices in a BEC. We are now able to explore 
the properties of bulk vortex matter, which 
includes local structure, defects, and long- 
range order. In contrast, the properties of 
small arrays are strongly affected by surface 
and finite size effects. The vortex lattices are 
highly excited collective states of BECs with 
an angular momentum of up to 60 h per 
particle. Our experiments show that such 
states can be prepared and are much more 
stable than predicted (5). 

Vortices in BECs have been the subject 
of extensive theoretical study (6). Experi-
mental progress began only recently with 
the observation of quantized circulation in 
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a two-component condensate by a phase 
engineering technique (7)  and of vortex 
arrays in a single-component BEC (3). A 
condensate can be subjected to a rotating 
perturbation by revolving laser beams 
around it. This technique was used to study 
surface waves in a trapped BEC (a) ,  and 
subsequently for the creation of vortices 
(3). In 1997, we tried unsuccessfully to 
detect quantized circulation as a "centrifu- 
gal hole" in ballistic expansion of the gas 
(9, 10). Theoretical calculations (11-13) 
and ultimately the pioneering experimental 
work (3) showed that vortices can indeed 
be detected through ballistic expansion, 
which magnifies the spatial structure of the 
trapped condensate. 

BECs of up to 5 X lo7 Na atoms with a 
negligible thermal component (condensate frac- 
tion 2 90%) were produced by a com-
bination of laser and evaporative cooling tech- 
niques (8,  10, 14). A radio-frequency "shield" 
limited the magnetic trap depth to 50 kHz (2.3 
kK), preventing high-energy atoms from heat- 
ing the condensate. Experiments were per-
formed in cylindrical traps with widely varying 
aspect ratios. Most of the results and all of the 
images were obtained in a weak trap, with 
radial and axial frequencies of vr = 84 Hz and 
vL = 20 Hz (aspect ratio 4.2), respectively. In 
this weak trap inelastic losses were suppressed, 
resulting in larger condensates of typically 5 X 

lo7 atoms. Such clouds had a chemical poten- 
tial (k) of 310 nK (determined from time-of- 
flight imaging), a peak density of 4.3 X l0l4 
cm ' ,  a Thomas-Fermi radius along the radial 
direction (R,) of 29 km, and a healing length (5) 
of about 0.2 km. 

Vortex lattices were produced by rotating 
the condensate around its long axis with the 
optical dipole force exerted by blue-detuned 
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laser beams at a wavelength of 532 nm. A 
two-axis acousto-optic deflector generated a 
pattern of two laser beams rotating symmet- 
rically around the condensate at variable 
drive frequency R (8).The two beams were 
separated by one Gaussian beam waist (M. = 

25 km). The laser power of 0.7 mW in each 
beam corresponded to an optical dipole po- 
tential of 115 nK. This yielded a strong, 
anharmonic deformation of the condensate. 

After the condensate was produced. the 
stirring beam power was ramped up over 20 
ms, held constant for a variable stirring time. 
and then ramped down to zero over 20 ms. 
The condensate equilibrated in the magnetic 
trap for a variable hold time (typically 500 
ms). The trap was then suddenly switched 
off, and the gas expanded for 35 ms to radial 
and axial sizes of lr = 1000 k m  and lL = 600 
km, respectively. We probed the vortex cores 
using resonant absorption imaging. To avoid 
blurring of the images due to bending of the 
cores near the edges of the condensate, we 
pumped a thin, 50- to 100-km slice of atoms 
in the center of the cloud from the F == 1 to 
the F = 2 hyperfine state (15). This section 
was then imaged along the axis of rotatlon 
with a probe pulse resonant with the cycling 
F = 2 -,3 transition. The duration of the 
pump and probe pulses was chosen to be 
sufficiently short (50 and 5 ks, respect~vely) 
to avoid blurring due to the recoil-induced 
motion and free fall of the condensate. 

We observed highly ordered triangular 
lattices of variable vortex density containing 
up to 130 vortices (Fig. 1). A striking feature 
1s the extreme regularity of these lattices. free 
of any major distortions. even near the 
boundary. Such "Abrikosov" latt~ces were 
first predicted for quantized magnetic flux 
lines in type-11 superconductors (161. 
Tkachenko showed that their lowest energy 
structure should be triangular for an infinite 
system (17). A slice through images shows 
the high visibility of the vortex cores (Fig. 2), 
which was as high as 80%. For a trapped 
condensate with maximum vortex density. 
we ~nfer  that the distance between the kortl- 
ces was = 5 um. The radial size of the 
condensate in the time-of-flight images was 
over 10% larger when it was filled with the 
maximum number of vortices. probably due 
to centrifugal forces. 

When a quantum fluid is rotated at a 
frequency R, it attempts to distribute the 
vorticity as uniformly as possible. This is 
similar to a rigid body, for which the vorticity 
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