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In mammals, the central circadian pacemaker resides in  the hypothalamic 
suprachiasmatic nucleus (SCN), but circadian oscillators also exist in  peripheral 
tissues. Here, using wild-type and cryptochrome (mCry)-deficient cell lines 
derived from mCry mutant mice, we show that the peripheral oscillator in  
cultured fibroblasts is identical t o  the oscillator i n  the SCN in (i) temporal 
expression profiles o f  all known clock genes, (ii) the phase of the various mRNA 
rhythms (i.e., antiphase oscillation of Bmal l  and mPer genes), (iii) the delay 
between maximum mRNA levels and appearance of nuclear mPER1 and mPER2 
protein, (iv) the inability t o  produce oscillations in  the absence of functional 
mCry genes, and (v) the control of period length by mCRY proteins. 

In the mouse, the core oscillator of the master 
circadian clock in the SCN is composed of 
interacting positive and negative transcrip- 
tion-translation feedback loops (1-3), which 
involve three homologs of the Drosophila 
gene period (mPerl, mPer2, and mPer3), two 
cryptochrome genes (mCryl and mCry2), and 
the transcriptional activator genes Clock and 
Bmall (I, 2, 4). A key step in this feedback 
loop is the shutdown of CLOCK- and 
BMAL 1 -driven transcription by mCRY pro- 
teins (4). To keep pace with the solar day- 
night cycle, the master clock can be entrained 
by light received through photoreceptors in 
the retina (5 ) .Molecular oscillators also exist 
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in penpheral tissues, where they cycle with a 
6- to 8-hour delay with respect to the central 
pacemaker (6-8) In contrast to Drosophzla 
and zebrafish, mammalian penpheral clocks 
do not directly respond to light but are syn- 
chronized by the SCN by neuronal andlor 
humoral signals (9) In vitro, bnef treatment 
of cultured cells with various compounds [se- 
rum, forskolin, 12-0-tetradecanoylphorbol 
13-acetate (TPA), adenosine 3',5'-mono-
phosphate (CAMP), or dexamethasone] in- 
duces rhythmic expression of the clock genes 
Perl ,  Per2, and Cry1 and the circadian tran- 
scription factor gene dbp for two to three 
cycles (6, 10-12) 

To investigate whether the molecular 
makeup of the peripheral oscillator in cul- 
tured fibroblasts resembles that of the core 
oscillator In the SCN, we determined the 
expression profiles of all known clock genes 
in cultured rat-1 fibroblasts over a period of 3 
days (13) To trigger the oscillations, we used 
the vasocontracting peptide endothelin- 1 
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(ET-1) (14) which activates the protein ki- 
nase C-mitogen-activated protein kinase cas- 
cade and CAMP response element-binding 
protein (CREE) phosphorylation (15). This 
treatment induces a rapid, robust increase in 
Per l  and Per2 gene expression, followed by 
a sharp reduction in corresponding mRNA 
levels and subsequent synchronous cycling of 
Per l ,  Per2, Per3, and dbp mRNAs (Fig. 1) 
(16, 17).  Also, robust cycling of Bnlull 
mRNA was observed, with mRNA levels 
accumulating antiphase to Per and dbp 
mRNA cycles. Clock mRNA levels were 
constant at all time points examined. In ad- 
dition, Cry1 expression showed rhythmicity, 
peaking 4 to 8 hours after Per mRNAs (16). 
These data demonstrate that ET-I can induce 
circadian gene expression in cultured rat-1 
cells and that the temporal expression pat- 
terns of Per, Bmall. Cry], and dbp genes (all 
rhythmically expressed) as well as the Clock 
gene (constitutively expressed) match those 
in the SCN (1, 18). Casein kinase IE (CHE) 
and Cry2 genes did not show apparent rhyth- 
mic expression in rat-1 cells. a finding con- 
sistent with the observation that in the SCN 
CKIE is constitutively expressed (19) and cy- 
cling of mouse Cry2 is weak (18) or not 
detectable (20). 

Next, we analyzed by immunocytochem- 
istry the PER1 and PER2 protein expression 
profiles in these cells. Nuclear staining oc- 
curred 26 to 28 hours after treatment. indi-
cating that mPERl and mPER2 protein cy- 
cles follow the rhythm of Per l  and Per2 
mRNA expression with a 4- to 8-hour delay 
(Fig. 2), as in the SCN (21). In addition, 
pronounced PER1 and PER2 nuclear staining 
was found 1.5 hours after ET-1 treatment 
(Fig. 2) (221, suggesting that ET-I causes 
rapid synthesis of PER1 and PER2 and trans- 
location of these proteins into the nucleus. 
This nuclear PER2 may up-regulate Bmall 
expression and down-regulate Prv gene ex- 
pression 4 hours after ET-1 treatment (Fig. 1 ) 
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(16). The latter effect may also involve the 
CRY proteins. 

We next used spontaneously immortalized 
(mutant) mouse embryonic fibroblasts (MEFs) 
from wild-type and mCry14-mCry2'- mice to 
test the role of mCry genes in the fibroblast 
clock (23, 24). Treatment of wild-type MEFs 
with ET-1 resulted in a temporary induction of 
mPerl gene expression within 1 hour, followed 
by synchronous cycling of mPerl and dbp 
mRNA (Fig. 3A) (1 7). Four hours after stimu- 
lation, increased Bmall mRNA levels were ob- 
served (Fig. 3A), which most likely requires 
synthesis and nuclear translocation of the 
mPER2 protein and subsequent rhythmic ex- 
pression of Brnall mRNA antiphase to mPerl 
and dbp. Thus, as in rat-1 cells, ET-1 can 
induce circadian gene expression in MEFs. In 
marked contrast, ET-1 treatment of mCry14- 
mC&- MEFs did not result in rhythmic ex- 
pression of mPerl, Bmall, or dbp genes (Fig. 3, 
B and C). Instead, as in the SCN, mCry14- 
mCryp- MEFs showed continuously accumu- 
lating mPerl mRNA and low levels of Bmall 
mRNA, respectively. The absence of mCRY 
proteins also resulted in constant high expres- 
sion of the dbp gene. Because mCry14- 
mCtyp- MEFs express ET-A receptor mRNA 
(25); the lack of rhythnuc gene expression in 
these cells is unlikely to result from improper 
activation of signal transduction pathways, but 
rather is caused by the absence of mCRY pro- 
teins. Interestingly, mCry14-mCry2'- cells re- 
tain the ability to respond to ET-1 treatment or 
a serum shock with instantaneous induction of 
mPerl and mPer2 gene expression (16). Thus, 
as in the SCN and peripheral tissues in intact 
animals, mCry genes are indispensable for gen- 
eration of molecular rhythm in stimulated cul- 
tured mouse fibroblasts. 

To investigate whether the periodicity of 
peripheral clocks is an intrinsic property of 
the peripheral oscillator or whether it is insti- 
gated by cues from the SCN, we have mea- 
sured temporal expression patterns of the dbp 
gene in immortalized MEFs from mCryl and 
mCty2 single-mutant mice, known for their 
short (T = 22.5 hours) and long (T = 24.6 
hours) free-running periodicity of locomotor 
activity, respectively (18, 20, 23). The peri- 
odicity of dbp mRNA oscillation in mCryl-l- 
MEFs, although weak, is about 2 to 4 hours 
shorter than in mCryT1- MEFs (Fig. 3, D and 
E). This indicates that mCRY-mediated con- 
trol over the pace of biological clockwork is 
not restricted to the central pacemaker in the 
SCN, but holds for circadian oscillators in 
any mammalian tissue. 

Finally, we measured DBP protein oscil- 
lation patterns in serum shock-stimulated 
MEFs. Robust oscillation of nuclearly local- 
ized DBP was observed in wild-type and 
mCryF- MEFs (Fig. 4) (26). In mCryl-I- 
cells, nuclear DBP levels remained high after 
a brief initial nadir. This finding not only 

confirms the unexpected pattern of dbp gene tions. As expected on the basis of constant 
expression in these cells but also emphasizes high levels of dbp rnRNA, nuclei of mCryl-l- 
the weakness of mCry2-mediated oscilla- rnCryT1- cells were positive at any time. For 
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0 8 16 24 32 40 48 56 64 
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Fig. 1. Temporal expres- 
sion profiles of clock 
genes in rat-1 fibroblasts 
after ET-1 treatment: 
Quantification of tempo- 
ral changes in Per2, 
Bmall, and Clock mRNAs. 
Basal levels of each 
mRNA (at time point 0) 
were arbitrarily set to 
100. Results shown are 
means 2 SEM; n = num- 
ber of experiments. 

A Ohr 1.5hr 4hr 8hr 16hr 26hr 28hr 

Hours Hours 

Fig. 2. Temporal P E R l  and PER2 protein expression profiles in ET-1-treated rat-1 fibroblasts and 
comparison with corresponding mRNA expression profiles. (A) lmmunofluorescence showing 
accumulation of P E R l  and PER2 proteins in nuclei of ET-1-treated rat-1 fibroblasts. (B) Percentages 
of cells positive for antibodies to PERl  and PER2 (counted in 100 to 200 DAPI-stained nuclei) at the 
indicated times. For comparison, relative mRNA levels of Per7 and Per2 are shown as broken lines. 
Results shown are means +. SEM (three independent experiments). 
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Bimsll 

UPOCl 

Fig. 3. Clock gene expression in ET-1-stimulated 
wild-type and mCry mutant MEFs. (A and 6) 
Temporal mRNA expression patterns for m k r  I ,  
dbp, and BmaIl after ET-1 treatment of wild-type MEFs (A) and mCryl-'-mCry2-"- MEFs 
(B), as determined by Northern blot analysis. (C) Quantification of temporal changes in 
mPer7, dbp, and Bmal7 mRNAs in and m ~ r y l ~ - r n ~ & -  (red lines) and wild-type cells. 
Data shown were confirmed in two independent wild-type MEF lines and three indepen- 
dent mCry1-/-rvC@- MEF lines, respectively. Basal levels of each mRNA (at time point 
0) were arbitrarily set to 'LOO. (0 and E) temporal d6p rnRNA expression pattern in 
m~ry7-I- and mCry2-I- MEFs after the stimulation. Asterisks indicate peaks of rhythmicall 
expressed dbp mRNk (F) Quantification of temporal change. in dbp mRNA in mCryl-2 
and rn~ryZ!- cells. Resutts shown are means 2 $EM (n = 3). Peak Iwels of dbp mRNA 
were arbitrarily set to 100. 
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Fig. 4. Temporal DBP protein expression profile in wild-type and mCry mutant 
MEFs. (A) lmmunofluorescence study showing nuclear DBP protein (green) at 
12-hour intervals after stimulation of wild-type and mCry7 mutant cells with 
50% horse serum. As an internal control cells were stained for the nonoscil- 
lating nuclear p62 protein, a component of the basal transcription factor TFllH 
(red nuclei). (B) Percentages of nuclei positive for antibody to DBP (counted 

I 
mCryZ-/- in 150 to 200 nuclei positive for p62 mAb), measured at 4-hour intervals. 

Time points were analyzed in a blind fashion, and the results were confirmed 
in three independent experiments (and in two independent wild-type MEF 
lines). 

all cell lines tested, the appearance o f  nuclear Taken together, our data indicate that the tion feedback loops. The mRNA expression 
DBP largely coincided with the (ET-1-medi- molecular makeup o f  the peripheral circadian profiles for these circadian genes display an 
ated) dbp mRNA expression profile. These oscillator i n  cultured fibroblasts is similar to "SCN-like" temporal expression profile as 
findings suggest that, as in the SCN, DBP is that o f  the master oscillator in the SCN. The well as phase relationship, and, at least for 
rapidly synthesized and translocated into the same set o f  circadian genes is assembled into mPER1, mPER2, and DBP, the delay be- 
nucleus (27). positive and negative transcription-transla- tween onset o f  transcription and nuclear ap- 
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pearance of the corresponding gene product 
is comparable to that in the SCN. Moreover, 
the homozygous inactivation of one or both 
mCry genes-known to accelerate, retard, or 
even abolish the biological clock in the SCN 
(18, 20, 23)-affects the peripheral oscillator 
to a similar extent. Thus, the peripheral os- 
cillator in immortalized cultured fibroblasts 
constitutes a bona fide in vitro model for the 
molecular oscillator in the SCN, and could 
potentially allow the use of skin fibroblasts as 
a means of identifying clock gene defects in 
patients with circadian disorders. 

Although peripheral clocks in the intact 
mouse possess some degree of autonomy, as 
is evident from the uncoupling of entrainment 
of peripheral and master clocks by glucocor- 
ticoid administration or restricted feeding (6-
8), they differ from the master clock in the 
SCN in one important aspect. Unlike in cul- 
tured SCN slices, rhythmic clock gene ex- 
pression in cultured peripheral organs/tissues 
and fibroblasts is dampened after a number of 
days (9). Because, as we have shown, the 
molecular makeup of the core oscillator of 
master and peripheral clocks is identical, the 
mechanism that allows the master clock to 
keep on ticking remains to be identified. 
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During the next 50 years, which is likely to be the final period of rapid agri- 
cultural expansion, demand for food by a wealthier and 50% Larger global 
population will be a major driver of global environmental change. Should past 
dependences of the global environmental impacts of agriculture on human 
population and consumption continue, lo9 hectares of natural ecosystems 
would be converted to agriculture by 2050. This would be accompanied by 2.4-
to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of 
terrestrial, freshwater, and near-shore marine ecosystems, and comparable 
increases in pesticide use. This eutrophication and habitat destruction would 
cause unprecedented ecosystem simplification, loss of ecosystem services, and 
species extinctions. Significant scientific advances and regulatory, technolog- 
ical, and policy changes are needed to control the environmental impacts of 
agricultural expansion. 

During the fmt 35 years of the Green Revolu- ecosystems by the use and release of limiting 
tion, global grain production doubled, greatly resources that influence ecosystem functioning 
reducing food shortages, but at high environ- (nitrogen, phosphorus, and water), release of 
mental cost (1-5). In addition to its effects on pesticides, and conversion of natural ecosys- 
greenhouse gases (1, 6, 7), agriculture affects tems to agriculture. These sources of global 

change may rival climate change in environ-
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