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Heterologous primelboost regimens have the potential for raising high levels 
of immune responses. Here we report that DNA priming followed by a recom- 
binant modified vaccinia Ankara (rMVA) booster controlled a highly pathogenic 
immunodeficiency virus challenge in a rhesus macaque model. Both the DNA 
and rMVA components of the vaccine expressed multiple immunodeficiency 
virus proteins. Two DNA inoculations at 0 and 8 weeks and a single rMVA 
booster at 24 weeks effectively controlled an intrarectal challenge administered 
7 months after the booster. These findings provide hope that a relatively simple 
multiprotein DNAIMVA vaccine can help to control the acquired immune 
deficiency syndrome epidemic. 

Cellular immunity plays an important role vaccines alone. Previously, we showed that 
in the control of immunodeficiency virus boosting a DNA-primed response with a 
infections (1). Recently, a DNA vaccine poxvirus was superior to boosting with 
designed to enhance cellular immunity by DNA or protein for the control of a non- 
cytokine augmentation successfully con- pathogenic immunodeficiency virus (4). 
tained a highly virulent immunodeficiency Here we test DNA priming and poxvirus 
virus challenge (2). Another promising ap- boosting for the ability to protect against a 
proach to raising cellular immunity is DNA highly pathogenic mucosal challenge. The 
priming followed by recombinant poxvirus 89.6 chimera of simian and human immu- 
boosters (3). This heterologous primelboost nodeficiency viruses (SHIV-89.6) was used 
regimen induces 10- to 100-fold higher fre- for the construction of immunogens and its 
quencies of T cells than priming and boost- highly pathogenic derivative, SHIV-89.6P, 
ing with DNA or recombinant poxvirus for challenge (5). SHIV-89.6 and SHIV- 

89.6P do not generate cross-neutralizing 
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promoters (10). Vaccination was accom-

plished by priming with DNA at o and 8 
weeks and boosting with rMVA at 24 
weeks (Fig. 1A) (11). Four groups of six 
rhesus macaques each were primed with 
either 2.5 mgA(high-dose) or 250 p g  (low- 
dose) of DNA by intradermal (i.d.) or in- 
tramuscular (i.m.) routes with a needleless 
.let injection device (Bioject, Portland, Or- 
egon) (12, 13). Gene gun deliveries of 
DNA were not used because these had 
primed nonprotective immune responses in 
our 1996-98 trial (4). The MVA189.6 
booster immunization [2 x 10' plaque-
forming units (pfu)] was injected with a 
needle both i.d. and i.m. A control group 
included two mock immunized animals and 
two naive animals. The challenge was giv- 
en at 7 months after the rMVA booster to 
test for the generation of long-term immu- 
nity. Because most HIV-1 infections are 
transmitted across mucosal surfaces, an in- 
trarectal challenge was administered. 

DNA priming followed by rMVA boost- 
ing generated high frequencies of virus-spe- 
cific T cells that peaked at 1 week after the 
rMVA booster (Fig. 1). The frequencies of T 
cells recognizing the Gag-CM9 epitope were 
assessed by means of Mamu-A*O1 tetramers 
(14), and the frequencies of T cells recogniz- 
ing epitopes throughout Gag were assessed 
with pools of overlapping peptides and an 
enzyme-linked irnmunospot (ELISPOT) as-
say (15, 16). Gag-CM9 tetramer analyses 
were restricted to macaques that expressed 
the Mamu-A*Ol histocompatibility type, 
whereas ELISPOT responses did not depend 
on a specific histocompatibility type. As ex- 
pected, the DNA immunizations raised low 
levels of memory cells that expanded to high 
frequencies within 1 week of the rMVA 
booster (Fig. 1) (17). In Mamu-A*Ol ma-
caques, CD8 cells specific to the Gag-CM9 
epitope expanded to frequencies as high as 
19% of total CD8 T cells (1 7). This peak of 
specific cells underwent a 10- to 100-fold 
contraction into the DNAMVA memory 
pool (Fig. 1A) (17). ELISPOTs for three 
pools of Gag peptides also underwent a major 
expansion [frequencies up to 4000 spots for 
1 X lo6 peripheral blood mononuclear cells 
(PBMC)] before contracting from 5- to 20- 
fold into the DNNMVA memory response 
(Fig. 1B). The frequencies of ELISPOTs 
were the same in macaques with and with- 
out the A*Ol histocompatibility type (P > 
0.2) (18). At both peak and memory phases 
of the vaccine response, the rank order for 
the height of the ELISPOTs in the vaccine 
groups was 2.5 mg i.d. > 2.5 mg i.m. > 
250 p g  i.d. > 250 p g  i.m. (Fig. 1B). The 
interferon-y (IFN-y) ELISPOTs included 
both CD4 and CD8 cells (19). Gag-CM9- 
specific CD8 cells had good lytic activity 
after restimulation with peptide (19). 
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one-tenth of their peak height (Figs. 1A and 
3A) (19). In contrast to the vigorous sec- 
ondary response in the vaccinated animals, 
the naive animals mounted a modest prima- 
ry response (Figs. 1B and 3A). Tetramer' 
cells peaked at less than 1% of total CD8 
cells (Fig. 3A), and IFN-y-producing 
ELISPOTs were present at a mean frequen- 
cy of about 300 as opposed to the much 
higher frequencies of 1000 to 6000 in the 
vaccine groups (Fig. 1B) (P < 0.05) (18). 
The tetramer' cells in the control group, 
like those in the vaccine group, produced 
IFN-y after peptide stimulation (Fig. 3B). 
By 12 weeks after challenge, three of the 
four controls had undetectable levels of 
IFN-y-producing ELISPOTs (19). This 
rapid loss of antiviral T cells in the pres- 
ence of high viral loads may reflect the lack 
of CD4 help. 

T cell proliferative responses demon-

strated that virus-specific CD4 cells had 
survived the challenge and were available 
to support the antiviral immune response 
(Fig. 3C) (27). At 12 weeks after challenge, 
mean stimulation indices for Gag-Pol-Env 
or Gag-Pol proteins ranged from 35 to 14 in 
the vaccine groups but were undetectable in 
the control group. Consistent with the pro- 
liferation assays, intracellular cytokine as-
says demonstrated the presence of virus- 
specific CD4 cells in vaccinated but not 
control animals (19). The overall rank order 
of the vaccine groups for the magnitude of 
the proliferative response was 2.5 mg i.d. > 
2.5 mg i.m. > 250 pg i.d. > 250 pg i.m. 

At 12 weeks after challenge, lymph 
nodes from the vaccinated animals were 
morphologically intact and responding to 
the infection, whereas those from the in- 
fected controls had been functionally de- 
stroyed (Fig. 4). Nodes from vaccinated 

The highly pathogenic SHIV-89.6P 
challenge was administered intrarectally at 
7 months after the rMVA booster (20), 
when vaccine-raised T cells were in mem- 
ory (Fig. 1). The challenge infected all of 
the vaccinated and control animals (Fig. 2). 
However, by 2 weeks after challenge, titers 
of plasma viral RNA were at least 10-fold 
lower in the vaccine groups (geometric 
means of 1 x lo7 to 5 X lo7) than in the 
control animals (geometric mean of 4 X 

10') (Fig. 2A) (21-23). By 8 weeks after 
challenge, both high-dose DNA-primed 
groups and the low-dose i.d. DNA-primed 
group had reduced their geometric mean 
loads to about 1000 copies of viral RNA 
per milliliter. At this time, the low-dose 
i.m. DNA-primed group had a geometric 
mean of 6 X 10' copies of viral RNA and 
the nonvaccinated controls had a geometric 
mean of 2 X lo6. By 20 weeks after chal- 
lenge, even the low-dose i.m. group had 
reduced its geometric mean copies of viral 
RNA to 1000. Among the 24 vaccinated 
animals, only one animal, animal number 
22 in the low-dose i.m. group, had inter- 
mittent viral loads above 1 X lo4 copies 
per milliliter (Fig. 2D). 

By 5 weeks after challenge, all of the 
nonvaccinated controls had undergone a 
profound depletion of CD4 cells (Fig. 2B). 
All of the vaccinated animals maintained 
their CD4 cells, with the exception of ani- 
mal 22 in the low-dose i.m. group (see 
above), which underwent a slow CD4 de- 
cline (Fig. 2E). By 23 weeks after chal- 
lenge, three of the four control animals had 
succumbed to AIDS (Fig. 2C). These ani- 
mals had variable degrees of enterocolitis 
with diarrhea, cryptosporidiosis, colicysti- 
tis, enteric campylobacter infection, 
splenomegaly, lymphadenopathy, and SIV- 
associated giant cell pneumonia. In con-
trast, all 24 vaccinated animals maintained 
their health. 
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Fig. 1. Temporal frequencies of Gag-specific T cells. (A) Gag-specific CD8 T cell responses raised by 

by 2 weeks after challenge, tetramer+ cells 
in the peripheral blood had expanded to 
frequencies as high as, or higher than, after 
the rMVA booster (Figs. 1 and 3A). The 
majority of the tetramert cells produced 
IFN-y in response to a 6-hour peptide stim- 
ulation (Fig. 3B) (24, 25) and did not have DNA priming and rMVA booster immunizations. The schematic presents mean Gag-CM9-tetrarner 
the "stunned" IFN-y negative phenotype data generated in the high-dose i.d. DNA-immunized animals. (B) Gag-specific IFN-y ELlSPOTs in 

sometimes observed in viral infections A+O1 (open bars) and non-A+O1 (filled bars) macaques at various times before challenge and at 2 
weeks after challenge. Three pools of 10 to  13 Gag peptides (22-mers overlapping by 12) were used (26). The postchallenge burst of T cells for the analyses. The numbers above data bars represent the arithmetic mean r the SD for the 

contracted concomitant with the decline of ELlSPOTs within each group. The numbers at the top of the graphs designate individual animals. *,
the viral load. By 12 weeks after challenge, data not available; #, <20 ELlSPOTs per 1 X lo6  PBMC. Temporal data for Gag-CM9-Mamu-A*Ol 
virus-specific T cells were present at about tetramer-specific T cells can be found in the supplementary data (17). 
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animals contained large numbers of reac- 
tive secondary follicles with expanded ger- 
minal centers and discrete dark and light 
zones (Fig. 4A). By contrast, lymph nodes 
from the nonvaccinated control animals 
showed follicular and paracortical deple- 
tion (Fig. 4B), whereas those from unvac- 
cinated and unchallenged animals dis-
played normal numbers of minimally reac- 
tive germinal centers (Fig. 4C). Germinal 
centers occupied <0.05% of total lymph 
node area in the infected controls, 2% of 
the lymph node area in the uninfected con- 
trols, and up to 18% of the lymph node area 
in the vaccinated groups (Fig. 4D). More 
vigorous immune reactivity in the low-dose 
than the high-dose DNA-primed animals 
was suggested by more extensive germinal 
centers in the low-dose group (Fig. 4D). At 
12 weeks after challenge, in situ hybridiza- 
tion for viral RNA revealed rare virus-
expressing cells in lymph nodes from 3 of 
the 24 vaccinated macaques, whereas virus- 
expressing cells were readily detected in 
lymph nodes from each of the infected 
control animals (19). In the controls, which 
had undergone a profound depletion in 
CD4 T cells, the cytomorphology of infect- 
ed lymph node cells was consistent with a 
macrophage phenotype (19). 

The primelboost strategy raised low lev- 

Fig. 2. Temporal viral 
loads, CD4 counts, 
and survival after lo9/  
challenge of vaccinat- 
ed and control ani-
mals. (A) Geometric 
mean viral loads and 
(B) geometric mean 
CD4 counts. (C) Sur-
vival curve for vacci- 
nated and control an- 
imals. The dotted line 
represents all 24 vac-
cinated animals. (D) 
Viral loads and (E) 
CD4 counts for indi- 
vidual animals in the 
vaccine and control 
groups. The key to 
animal numbers is 
presented in (E). As-
says for the first 12 
weeks after challenge 
had a detection level 
of 1000 copies of 
RNA per milliliter of 
plasma. Animals with 
loads below 1000 
were scored with a 
load of 500. For 
weeks 16 and 20, the 
detection level was 
300 copies of RNA 
per milliliter. Animals 
with levels of virus 
below 300 were 

els of antibody to Gag and undetectable All of these previous studies have used 
levels of antibody to Env (Fig. 5). Postchal- more than three vaccine inoculations, none 
lenge, antibodies to both Env and Gag un- have used mucosal challenges, and most 
derwent anamnestic responses with total have challenged at peak effector responses 
Gag antibody reaching heights approaching and not allowed a prolonged postvaccina- 
1 mglml and total Env antibody reaching tion period to test for "long-term" efficacy. 
heights of up to 100 kglml (28). By 2 The dose of DNA had statistically sig- 
weeks after challenge, neutralizing anti- nificant effects on both cellular and humor- 
bodies for the 89.6 immunogen, but not the a1 responses ( P  < 0.05), whereas the route 
SHIV-89.6P challenge, were present in the of DNA administration affected only hu- 
high-dose DNA-primed groups (geometric moral responses (18). Intradermal DNA de- 
mean titers of 352 in the i.d. and 303 in the livery was about 10 times more effective 
i.m. groups) (Fig. 5C) (29). By 5 weeks than i.m. inoculations for generating anti- 
after challenge, neutralizing antibody to body to Gag (P = 0.02) (18). Neither route 
89.6P had been generated (geometric mean nor dose of DNA appeared to have a sig- 
titers of 200 in the high-dose i.d. and 126 in nificant effect on protection. At 20 weeks 
the high-dose i.m. group) (Fig. 5D) and after challenge, the high-dose DNA-primed 
neutralizing antibody to 89.6 had started to animals had slightly lower geometric mean 
decline. By 16 to 20 weeks after challenge, levels of viral RNA (7 X lo2 and 5 X lo2) 
antibodies to Gag and Env had fallen in than the low-dose DNA-primed animals 
most animals. (9 X 10' and 1 x lo3). 

Discussion. Our results demonstrate that The DNNMVA vaccine controlled the 
a multiprotein DNAIMVA vaccine can infection, rapidly reducing viral loads to near 
raise a memory immune response capable or below 1000 copies of viral RNA per mil- 
of controlling a highly virulent mucosal liliter of blood. Containment, rather than pre- 
immunodeficiency virus challenge. Our vention of infection, affords the opportunity 
levels of viral control were more favorable to establish a chronic infection (4). By rap- 
than have been achieved with only DNA idly reducing viral loads, a multiprotein 
(30) or rMVA vaccines (31) and were com- DNNMVA vaccine will extend the prospect 
parable to those obtained for DNA immu- for long-term nonprogression and limit HIV 
nizations adjuvanted with interleukin-2 (2). transmission (32, 33). 

GM, all groups GM, all groups1 I 

...... Vaccinated 
-Non-Vaccinated 

scored at 300. Weeks Post Challenge 
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Fig. 3. Postchallenge T 
cell responses in vaccine 
and control groups. (A) 
Temporal tetramer+ cells 
(dashed blue line) and vi- 
ral loads (solid pink line). 
(B) lntracellular cytokine 
assays for IFN-y produc- 
tion in response to  stim- 
ulation with the Gag-CM9 
peptide at 2 weeks after 
challenge. This ex vivo as- 
sav allows evaluation of 

2.5 mg, i.d. 2.5 mg, i.m. Controls 

the functional status of Weeks Post Challenge 
the peak postchallenge 
tetramer+ cells displayed B 
in Fig. IA. (c) Prolifera- High dose i.d. High dose i.m. 
tion assay at 12 weeks af- 
ter challenge. Gag-Pol- 
Env (open bars) and 
Gag-Pol (hatched bars) 
produced by transient 
transfedions were used 

CDS for stimulation. Superna- 
tants from mock-trans- 
fected cultures sewed as 
control antigen. Stimu- C 
lation indices are the 

Controls 

growth of cultures in the 
presence of viral antigens 
divided by the growth of 
cultures in the presence 
of mock antigen. 

Infected 2.5 ing, i.d 2.5 mg, i.m 25Opg, i.d. 250 pg, i.m. eonbob 

260 a. id. 

260 pg. im. 

Contmls (unfnf) a+ I 
Gennlnal Centers, 

% of Lymph Node Area 
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