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Squeezed States in a  
Bose-Einstein Condensate  

C. Orzel, A. K. Tuchman, M. L. Fenselau. M. Yasuda,* M. A. Kasevich 

We report manipulation of the atom number statistics associated with Bose- 
Einstein condensed atoms confined in an array of weakly linked mesoscopic 
traps. We used the interference of atoms released from the traps as a sensitive 
probe of these statistics. By controlling relative strengths of the tunneling rate 
between traps and atom-atom interactions within each trap, we observed trap 
states characterized by sub-Poissonian number fluctuations and adiabatic tran- 
sitions between these number-squeezed states and coherent states of the atom 
field. The quantum states produced in this work may enable substantial gains 
in  sensitivity for atom interference-based instruments as wel l  as fundamental 
studies of quantum phase transitions. 

The study of squeezed states of the electro- 
magnetic field (I), states that have sub-Pois- 
sonian fluctuations in either the number of 
photons or the phase of the field, is a dynamic 
field of quantum optics, touching on both 
fundamental questions of quantum measure- 
ment and practical issues in precision mea-
surement. The use of squeezed states in op- 
tical interferometry can potentially lead to a 
marked improvement in interferometric mea- 
surements by allowing for statistical sensitiv- 
ities that scale inversely with the number of 
detected photons (the Heisenberg limit) (2). 
This is of great interest in making detectors 
for rotation, acceleration, and even gravita- 
tional waves. The sensitivity of classical 
methods is limited by photon shot noise and 
scales inversely with the square root of the 
number of detected photons. 

In recent years, interferometric measure-
ment techniques have been extended to 
include interference of atomic de Broglie 
waves (3). The accuracy and sensitivity 
of atom-interferometer- based gyroscopes, 
gravimeters, and gravity gradiometers are 
comparable to the state-of-the-art detectors 
that use more traditional techniques. 

It is natural to ask whether it is possible to 
combine these two techniques to further im- 
prove interferometric measurements: Is it 
possible to create a source of squeezed states 
of the atom field suitable for atom inter-
ferometry below the atom shot-noise limit? 
Here, we report the observation of an array of 
atom-number-squeezed states in an optical 
lattice potential populated by atoms from a 
Bose-Einstein condensate (BEC). This repre- 
sents a step toward the goal of Heisenberg- 
limited atom interferometry (4). These states 
are related to spin-squeezed states that have 
been recently observed in nondegenerate 
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atomic ensembles (5-7)  and that mav also be 
used for interferometry below the shot-noise 
limit (8, 9). 

The essential physics underlying the for- 
mation of atom-number-saueezed states in a 
lattice potential is illustrated by considering 
the many-atom ground state of a BEC in a 
double-well potential (10-12). In this model 
system, N bosonic atoms are confined by an 
infinite harmonic potential that is divided into 
two wells (left and right) by a barrier that can 
be raised and lowered arbitrarily. Making a 
simple two-mode approximation, considering 
only the lowest energy states, the creation and 
annihilation operators (a:,, and a,.,, respec-
tively) for atoms localized in the ground state 
of either the left or the right potential well can 
be constructed. Neglecting terms that depend 
only on the total conserved particle number, 
the Hamiltonian for the system can be written 

where g = 4~a,,fi~!m is the mean-field 
energy constant [a,, is the s-wave scatter- 
ing length that parameterizes the repulsive 
collisional interaction between condensate 
atoms (a,, = 5.8 nm for the "Rb F = 2, m f  
= 2 state), 2 ~ f i  is Planck's constant, and m 
is the atomic mass]. The term In y describes 
tunneling between wells (atoms are created 
in one well and annihilated in the other), 
whereas the term in gp,  which depends on 
the number of atoms within each well, de- 
scribes the mean field energy due to inter- 
actions between atoms in the same well. 
The coefficients v and R are determined 
from integrals over single-particle wave 
functions (13). 

The ratio Ngply of the mean field energy 
per particle to the tunneling energy deter- 
mines the nature of the many-body ground 
state. In the weak interaction, strong tunnel- 
ing limit (Ngply << I), the interaction term is 
negligible. In this case, each atom is in a 
coherent superposition of left-well and right- 

well states, and the ground state of the system 
is a state with a mean number N/2 of atoms in 
each well with Poissonian fluctuations a,, -
a about that mean (a: = (6 ' )  - (ri)2, 
with ri the number operator for the left or 
right well). The states in each well are quasi- 
coherent states as the total number of atoms 
in the system is fixed (14). Because the dif- 
ference between these states and full coherent 
states becomes small for large N, we refer to 
these states simply as coherent states. In the 
opposite limit of strong interactions or weak 
tunneling (Ngply >> I), the tunneling term is 
negligible. In this case, the Hamiltonian is the 
product of number operators for the left and 
right wells, and the eigenstates are products 
of Fock states (an = 0) (15). For arbitrary 
Ngply, an decreases monotonically as we 
increase the interactions between atoms or 
decrease the rate of tunneling, scaling as 
(Ngp1y)-"" for Ngply 2 1 until NgP1y = 
N' (corresponding to an= 112). At values of 
Ngply = N', the system rapidly localizes to 
Fock states (11). This regime is analogous to 
the insulating phase of the Mott insulator 
transition in a lattice system (16). We note 
that the Gross-Pitaevskii equation, which as- 
sumes that the manv-atom wave function can 
be factorized into the product of identical 
single-atom wave functions. cannot be used -
to model the formation of squeezed states. 

Our experimental realization of number- 
squeezed states is not in a two-well poten- 
tial but in a one-dimensional array of wells 
with -12 wells populated. The array is 
formed by loading a BEC into an optical 
lattice potential, which is generated by a 
standing wave laser field. We do not con- 
trol the total number of atoms loaded into 
the lattice. We change the ratio NgP1y by 
varying the intensity of the lattice laser and 
the initial condensate density. In this way, 
we create an array of number-squeezed 
states in the populated lattice sites. We 
observe the formation of squeezed states by 
exploiting the phase-sensitive interference 
of atoms released from the lattice (1 7, 18) 
to detect the increase in phase variance a+ 
associated with the reduced number vari- 
ance anat each lattice site (a+ x lla,,). 

The theoretical problem is generalized to 
the case of multiple wells by considering a 
sinusoidally varying external potential with 
depth U,, superimposed on the weaker har- 
monic confining potential that initially sup- 
ports the BEC. Invoking the assumptions in- 
troduced above for the two-well problem re- 
sults in the well-known Bose-Hubbard Ham- 
iltonian (16, 19-21). We solve for the ground 
state of this system variationally using trial 
wave functions that characterize the state at 
the ith lattice site by a Gaussian number 
distribution of mean number 4 and variance 
anz.Our numerical estimates of the variation- 
al parameters 4 and a,,, are in excellent 
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agreement with reported analytic results (20) 
(obtained for a uniform lattice in the limit 
an; > 112). In particular, ani a  ply)-'/^ 
for Nigply k 1. When oni 5 112, the system 
undergoes a quantum (Mott insulator) phase 
transition to a state with a Fock state in each 
well. In the experimental work described be- 
low, we investigate the regime * k u,,~ k 
112. Finally, we note that a few-well system is 
mathematically analogous to recently studied 
spinor condensate systems (22, 23). 

The apparatus used to create our BEC has 
keen described in detail (24). We load - 10' 

Rb atoms into a time-orbiting potential 
(TOP) trap and evaporatively cool the sample 
through a combination of TOP and forced 
radio frequency evaporation. We produce 
pure condensates of F = 2, m,. = 2 atoms that 
contain - lo4 atoms at nearcy zero tempera- 
ture. After the evaporation cycle is complete, 
we adiabatically relax the trapping potential 
by reducing the quadrupole component of the 
TOP field, thereby increasing the size and 
decreasing the density of our sample. For 
typical final trap parameters, we have a radial 
trap oscillation frequency of w, - 2 a  X 19 
s-I, with 3 X lo4 condensate atoms at a 
density of 5 X I O l 3  cmW3. 

After the adiabatic relaxation, we apply 
a vertically oriented one-dimensional opti- 
cal lattice to the sample by illuminating the 
sample with laser light at A = 840 nm. The 
light is focused to a l le  intensity radius of 
50 pm and retroreflected to form a standing 
wave. This produces a sinusoidally varying 
ac Stark shift of the atomic ground state. 
The large detuning of this laser from the 
X7Rb resonance at 780 nm allows us to 
obtain substantial light shifts with negligi- 
ble spontaneous emission, creating a peri- 
odic array of potential wells at the anti- 
nodes of the light field, with well depths up 
to -50 En (where En = fi2W/2m is the 
recoil energy from absorption of a 840-nm 
photon and k = 2aIA). The lattice light 
field also provides strong transverse con- 
finement in addition to providing periodic 
confinement along the propagation axis. At 
a 50 En depth, the transverse oscillation 
frequency is 2 a  X I20 s-I, substantially 
larger than the frequency associated with 
confinement in the magnetic trap alone. 

We load the lattice by linearly increasing 
the intensity of the lattice laser, reaching a 
well depth U, in a loading time T, between 2 
and 200 ms. For T, = 200 ms, the intensity 
ramp is approximately adiabatic, and the lat- 
tice system remains in its many-body ground 
state throughout the ramp. In particular, this 
ramp time is slow enough that excitation of 
phononlike longitudinal modes (20) and col- 
lective modes in individual wells (25, 26) is 
negligible. On the other hand, for T, = 2 ms, 
the intensity ramp is nonadiabatic and excites 
higher lying energy states. Both limits, as 

well as the boundary between these extremes, 
are investigated below. 

We probe the phase state of the system by 
switching off both the quadrupole component 
of the TOP field (27) and the lattice trapping 
potential, releasing the atoms to fall under the 
influence of gravity. As the sample falls, the 
clouds of atoms released from each lattice 
site expand ballistically so that they overlap 
and interfere with atoms released from neigh- 
boring sites (18). The contrast of the resulting 
interference pattern is used as a phase probe 
to distinguish between the limits of coherent 
and Fock states. 

For a sample in which the wave function 
at each lattice site is a coherent state, the 
density distribution in the vertical direction at 
a time t after release from the lattice consists 
of peaks spaced by 2v,t (where v, = 5.4 
m d s  is the photon recoil velocity), with an 
overall intensity envelope determined by the 
localization of the atoms within the lattice 
sites. For our experimental parameters, the 
localization is such that we observe at most 
two peaks in the interference signal. We hold 
the atoms in the lattice potential for a short 
time (2.5 ms) after switching off the TOP 
quadrupole field. This allows the gravitation- 
al potential difference between wells to es- 
tablish a relative phase difference between 
wells (28) that shifts the interference pattern 
to produce a signal with two equally popu- 
lated peaks (18). 

For a lattice having a Fock state at each 
site, the interference peaks are unresolved. 
Although the interference of two Fock states 
produces an interference pattern indistin- 
guishable from that of two coherent states 
kith a random relative phase (29, 30), the 
observation of interference from atoms re- 
leased from the -12 sites in our lattice may 
be viewed as a measurement that projects a 
random phase onto each site: The interfer- 
ence of 12 sources with random phases does 
not show well-resolved fringes. For states 
with larger phase variance than a coherent 
state, either due to number squeezing or some 
other dephasing mechanism, the interference 
contrast decreases with increasing variance. 

We take absorption images of the atomic 
density distribution after 8 ms of expansion, 
obtaining pictures like those in Fig. 1 for a 
lattice loaded with T, = 200 ms. The atoms 
are released from the lattice after the lattice 
depth reaches its maximum. For low lattice 
depths, and thus low Ngply (here and below 
N refers to the number of atoms in the central 
well), we see two well-resolved peaks in the 
interference signal. At larger well depths, the 
contrast between peaks is lost, indicating an 
increased phase variance. Vertical cross sec- 
tions through the atomic density distributions 
are shown in Fig. 1, D to F. The solid lines 
represent fits to the data of two Gaussians 
constrained to have the same lle width, with 

the heights of the individual peaks and the 
separation between them allowed to vary. We 
characterize the contrast by the ratio 5 of the 
width of a single peak to the separation be- 
tween the peaks. For 5 - 0.5, the distribution 
looks like-a single broad peak. 

We extract the phase variance a,, from 5 
by comparing measured cross sections with a 
numerical model of the interference signal. 
The model is based on the interference of 
expanding Gaussian wave packets, each as- 
signed a random phase from a distribution 
with a prescribed variance determined by the 
degree of number squeezing, as described 
below. Figure 2 shows the squeezing factor S 
defined by a: = So:,, as a function of NgpI 
y, where a+, is the phase variance for Ngply 
<< 1. We estimate the mean-field energy 
Ngp from the inferred size of our condensate 
(31) and the measured number of atoms and 
estimate the tunneling energy y from a cal- 
culation of the band structure in the tight 
binding limit. The observed squeezing factor 
increases to a maximum of -16 dB. The 
solid line shows the predicted dependence of 
S = (Ngply)'" (valid for Ngply 2 1). A fit 
to the data of (Ngply)' for w, = 2 a X 19 
s-I and Ngply < lo3 gives c = 0.54 + 0.09. 
The apparent saturation at larger Ngply is an 
artifact of the analysis method, which be- 

Vertical Position (pixels) 

Fig. 1. Absorption images (A t o  C) and the 
associated density cross sections (D t o  F) of 
atoms released from the lattice. The two- 
peaked structure is due t o  interference be- 
tween atoms released from different lattice 
sites. Lattice well depths: (A) U, = 7.2 E,, (B) 
U, = 18 E,, and (C) U, = 44 E,. These well 
depths correspond t o  values of NgPIG = 3, lo2, 
and lo5 and observed values of 5 = 0.22, 0.34, 
and 0.46, respectively. 
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comes less reliable as j approaches 0.5 
(where the interference signal appears as a 
single broad peak). At values of Ngply = 

lo5, the inferred squeezing factor is 25 dB, 
corresponding to a phase variance of 0.5 rad 
and number variance u,,- 1 atom in the 
central well. The largest'experimentally ob-
tained value of Ngply is an order of magni-
tude away from the Mott insulator transition 
point, which is expected at Ngply - lo6 for 
our parameters (16). However, at Ngply = 

lo5, wells with less than 125 atoms (about 
10% of the wells) are above the predicted 
transition point. We see no fundamental bar-
riers to bringing the entire lattice through the 
transition in future work. This may provide 
access to a source of number-squeezed states 
of unprecedented purity. 

The phase sensitivity of the interference 
signal also allows investigation of other 
dephasing mechanisms. Figure 3 shows a 
measurement of inhomogeneous phase 
broadening (phase dispersion). This mea-
surement was made by raising the well 
depth to Uo - 30 E, in a time scale that is 
long compared with the time scale for os-
cillations within one potential well, but 
shorter than the time scale for adiabaticity 
with respect to the many-body ground state. 
The atoms remain in the lowest vibrational 
state of each potential well, but not in the 
full many-body ground state of the system. 
In this case, we effectively break the con-
densate up into -12 subcondensates, 
whose mean phases evolve independently. 
After loading the lattice in this way, we 
hold the atoms in the combined TOP and 
lattice potential for a time t,,,, before re-
leasing them and observing the~interference 
peaks. Figure 3 shows 5 as a function of 
tholdfor a sample with o, = 2 ~ rX 19 s-'. 
For short hold times, the interference peaks 
are well resolved (5 - 0.22), as the mean 
phases have not had time to evolve. For 
longer hold times, 5 increases as the mean 
phases of the condensates in each well 
evolve independently at different rates be-
cause of differences in chemical potential 
between wells (32). Fitting sigmoidal 
curves to the data (solid line) for several 
values of o, to extract a dephasing time T,, 

we find that T, is inversely proportional to 
the curvature of the external TOP harmonic 
potential (inset to Fig. 3). Here the chemi-
cal potential inhomogeneity arises from an 
imbalance between the mean field energy 
and the external potential at each lattice site 
and is proportional to the curvature of the 
external potential. 

The dotted line in Fig. 3 shows 5 versus 
t,,,,, for a lattice with Uo = 18 E, and T, = 
200 ms. We see that j = 0.32 at t = 0 and 
find no substantial change in contrast for hold 
times up to 150 ms. Here the atoms are in the 
many-body ground state at tho,, = 0, which 

shows larger phase variance than the corre-
sponding T, = 2 ms data because of number 
squeezing. As the ground state is a stationary 
state, the phase variance does not evolve in 
time. 

As the squeezing occurs in the ground 
state of the system, the model also predicts 
the possibility of adiabatic transitions from 
squeezed to coherent states. For example, 
the system should move adiabatically from 
an initial coherent state into a squeezed 
state and then back to a coherent state when 
Uo is first increased and then decreased 
(Fig. 4A). For this experiment, we load the 
lattice with T~ = 200 ms to a well depth 
Uomax)- 40 E,  (where we observe a large 
phase variance) and then reduce the well 
depth at the same rate to a level Uplease)-
10 E, (where we observe well-resolved 
interference peaks). Figure 4B shows the 

interference signal for atoms released di-
rectly from a lattice at U;lea") after a T,= 

200 ms ramp. Figure 4C shows atoms re-
leased directly from a lattice at UTaX!, 
again after a T,= 200 ms ramp. Figure 4D 
shows the interference signal after the lat-
tice is raised to Uomax)in T~ = 200 ms and 
then lowered to U;lease) in 150 ms. The 
interference peaks in this case are less well-
resolved than those at the low lattice depth, 
but the contrast is markedly better than that 
at the high lattice depth. Figure 4, F to H, 
shows the result of a similar experiment 
carried out with T,= 2 ms, shown schemat-
ically in Fig. 4E. The lattice potential is 
raised to UOmax'quickly, maintained at that 
level for 10 ms, long enough for the 
dephasing seen in Fig. 3 to take place, and 
then decreased over - 150 ms to U,'elea"e!. 
This decrease is at the same rate as in Fig. 

A wLi21r=19s'  

I w,/2n.=27s1 
-Theory 

Fig. 2. Squeezing factor 5 as a 
function of the control parame-
ter NgPIy (evaluated for the 20 
center lattice site), for three dif- ' 
ferent initial condensate densi- ? 
ties. We varied the initial con-
densate density by varying the 2
strength of the harmonic TOP 
trap. We extract the squeezing .g l o  
factor from our data by compar- 3
ing observed values of 5 with 3 

those obtained from simulated 3: 
data sets. We simulate our inter-
ference signals with a simple 
one-dimensional model. This 0 

model evaluates the interference 10° 10' lo2 103 lo4 lo5 106 
of an array of -12 Gaussian 
wave packets, initially spaced by N ~ P / Y  

A12 and having l/e widths of X16. (In the experiment, we shut off the lattice field w i th  a 
-40-ks ramp t o  achieve a relatively large init ial wave packet extent. This ensures that the 
interference profiles contain at most t w o  peaks.) We account for squeezing by assigning a 
random phase t o  each wave packet, wi th this random phase being derived from a Gaussian 
distribution w i th  a prescribed variance that is a function of the squeezing factor and the 
number of atoms in the lattice site. We then allow the wave packets t o  evolve for 8 ms (the 
same interval used in the experiment) and calculate the probability distribution associated 
with the resulting wave function. To compare this simulated distribution w i th  experiment, we 
convolve i t  wi th a Gaussian resolution function, the width of which is inferred from our 
sharpest images. Finally, we f i t  the convolved waveform wi th  the same f i t  function we apply 
t o  our data, t o  obtain a relation between the squeezing factor and I,. We account for the 
stochastic nature of the simulation by repeating this procedure many times for a given set of 
parameters, t o  obtain an average 5 for a given squeezing factor. 

Fig. 3. Dephasing due t o  inho- 0.6 
mogeneous phase broadening. 
The points show I, as a function 
of hold time after loading into a 
lattice with U, - 30 E,, T, = 2 0.5 

ms, and w, = 2 ~ rX 19 S- ' .  

The solid line is a sigmoid f i t  t o  
the data t o  extract a dephasing 0 0.4 
time. The dotted line shows the 
behavior of a lattice with U, = 
18 E, and T, = 200 ms. (Inset) 
Dephasing time T, as a function 0.3 
of radial trap frequency w,. The 
solid line shows a f i t  t o  w i 2  (the 
curvature of the harmon~cTOP 0,2
potential scales as w:). 0 5 10 1 

Hold Time (ms) 
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4A. In this case, we see no substantial 
difference between 5 after release from 
Uomax) and 5 measured after the slow reduc- 
tion to Il'~"dsc). This confirms that the 
reduction in phase variance seen in Fig. 4D 
represents an adiabatic transition from a 
coherent state to a squeezed state back to a 
coherent state and is not the result of a 
rephasing or recondensing of the system as 
the lattice potential is slowly lowered (33). 

An estimate for the adiabaticity time scale 
is given by data for several different initial 
ramp speeds with the same 150-ms ramp 
down time (Fig. 5). We see a rapid increase in 
5 between ramp times of 2 and 15 ms. For a 
ern) = 30 E, lattice, our data indicate a 
time scale for adiabaticity with respect to the 
many-body ground state of -4 ms, consistent 
with the frequency of low-lying phonon ex- 

citations on, = -1 sin .rrmln,l (integer 
Iml 5 n,/2, where n, is the number of lattice 
sites) for our parameters (20). 

The interferometric method used to 
measure the phase variance opens the ex- 
citing possibility of studying the dynamic 
evolution of the quantum state after a dia- 
batic change in the lattice potential. If we 
prepare a number-squeezed state in the lat- 
tice, make a sudden change in the potential, 
and wait some time before releasing the 
atoms from the trap, we can stroboscopi- 
cally follow the phase spread as a function 
of time and watch the squeezed state evolve 
in the new potential. Numerical simulations 
predict an oscillation between number- 
squeezed and phase-squeezed states in such 
a system, which should be readily visible 
using our interferometric phase probe. Fu- 

3 

Time (ms) 

Fig. 4. Adiabatic transitions between squeezed and coherent states. (A) Schematic of the 
lattice intensity modulation used in the experiment. (B) Absorption image of atoms released 
from a lattice with Uo = 12 E,. (C) Absorption image of atoms released from a lattice with 
Uo = 41 E,. (D) Absorption image of atoms released after application of the intensity 
m~dulation shown in (A). (E) Schematic of the intensity ramp for T, = 2 ms. Atoms are held 
at the maximum lattice depth for 10 ms to allow inhomogeneous dephasing. (F) Absorption 
image after release from a lattice with Uo = 12 E,. (C)  Absorption image of atoms released 
from a lattice with Uo = 36 E,. (H) Absorption image of atoms released after application of 
the intensity ramp shown in (E). 

Fig. 5. 5 as a function of initial 
ramp speed dUldt = U ~ ~ " ~ ) I T .  
The lattice is increased to ~ 6 ~ ~ ~ 1 ,  
held for 10 ms, and then reduced 
to U P )  over 140 ms. The 
dotted line represents the aver- 
age contrast for atoms released 
from an 8 E, lattice; the dashed 
line represents the average con- 0.35 
trast for dephased samples. Cir- 
cles represent points with 
~ b ~ ~ ~ )  = 30 ER and different 
ramp times rr. Triangles repre- 
sent points with T = 200 ms 
and different uimaxf. 

ture experiments will focus on the dynamic 
behavior of the system, with an eye toward 
the ultimate goal of Heisenberg-limited 
atom interferometry with squeezed states. 
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