
generating 4.8 X 10-l8 W per molecule (31). 
The reason that the synthetic system can do 
more work than the biomolecular one is that 
kinesin uses adenosine triphosphate as an 
energy source, which upon hydrolysis releas- 
es -12 kcal mol-', whereas the present shut- 
tle uses a 355-nm photon of 81 kcal molp'. 

Tuning of the binding properties of the 
macrocycle and/or stations, and the photo- 
physical properties of the active chro-
mophore, may allow the use of light of a 
longer wavelength, faster switching times, 
and/or more powerful and efficient analogs to 
be produced. Practical applications of such 
light-induced mechanical motion at the mo- 
lecular level might involve the rearrangement 
of the structure of surfaces or the "fetching- 
and-carrying" of molecules or clusters of at- 
oms between specific locations (for example, 
across membranes). 
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Tropical Tropospheric Ozone 
and Biomass Burning 
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New methods for retrieving tropospheric ozone column depth and absorbing 
aerosol (smoke and dust) from the Earth Probe-Total Ozone Mapping Spec- 
trometer (EPITOMS) are used to follow pollution and to determine interannual 
variability and trends. During intense fires over Indonesia (August to November 
1997), ozone plumes, decoupled from the smoke below, extended as far as India. 
This ozone overlay a regional ozone increase triggered by atmospheric re- 
sponses to the E l  Niiio and Indian Ocean Dipole. Tropospheric ozone and smoke 
aerosol measurements from the Nimbus 7 TOMS instrument show E l  NiAo 
signals but no tropospheric ozone trend in the 1980s. Offsets between smoke 
and ozone seasonal maxima point to multiple factors determining tropical 
tropospheric ozone variability. 

Smoke and excess tropospheric ozone, both 
by-products of biomass burning, have long 
been observed over large regions of the tropics 
with satellites (1-3), aircraft, balloons, and 
ground-based instrumentation ( 4 4 ) .  Ozone 
forms as a result of biomass burning because 
combustion products are ozone precursors in 
the atmosphere: nitrogen oxides, carbon mon- 
oxide, and hydrocarbons. Other combustion 
products lead to the formation of aerosol parti- 
cles, including soot, that make up smoke. The 
highest smoke aerosol and tropospheric ozone 
amounts occur over southern Africa and the 
adjacent Atlantic (2, 5, 7), where a strong 
ozone, biomass-burning link has been con-
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f m e d  by airborne and ship-based measure- 
ments (5, 8-11). However, other observations 
(12) and some models (13-15) point to large- 
scale dynamics and lightning as prominent fac- 
tors in tropical tropospheric ozone distributions. 

Since late 1996, with the launch of Earth 
Probe-Total Ozone Mapping Spectrometer 
(EPITOMS) (16), real-time processing of ab- 
sorbing aerosol (smoke) and tropospheric 
ozone has enabled daily tracking of these 
pollutants at l o  latitude by 1.25' longitude 
resolution. The first exceptional ozone epi-
sode detected by EPITOMS occurred during 
the 1997 El Nifio-Southern Oscillation 
(ENSO) and Indian Ocean Dipole (IOD) 
events, when drought over Indonesia was 
followed by large fires. Here, we use clima- 
tological indices to show that ozone varia-
tions during this time resulted from perturbed 
dynamics, as well as from more active pho- 
tochemistry (1 7-21). Comparison of the EPI 
TOMS record with data from the Nimbus 
7ITOMS instrument that operated from 1979 
to 1992 (7)  shows similarities to data from 
1997 and allows determination of seasonal 
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cycles in tropospheric ozone and aerosols. 
The earlier record reveals an offset in the 
timing of seasonal tropospheric ozone and 
aerosol maxima and the absence of an ozone 
trend. 

The TOMS smoke aerosol index (22,23) 
is used as a proxy for biomass burning be-
cause it has daily global coverage and more 
consistent calibration and sampling than sat-
ellite fire counts. Tropospheric ozone column 
depth (TTO, in Dobson units; 1 DU = 
2.69 X 1016 molecules cm-') (7, 24-26) is 
retrieved bv means of the modified-residual 
method with corrections for aerosol interfer-
ences in total ozone (27). Variations in ozone 
and smoke aerosol over the Indonesian region 
from August 1996 through December 1998 
show a sharp TTO increase in mid-March 
1997 (shift from the black to the red line in 
Fig. lA), well before biomass fires (dashed 
line, Fig. 1A) led to a second increase in 
August 1997 (28). The March TTO increase 
is associated with the 1997-1998 ENS0 (Fig. 
lB, red triangles) and concurrent IOD that 
modify wind fields and precipitation (29-31). 
During an IOD event, followed by the Dipole 
Mode Index (Fig. lB, asterisks), anomalous 
subsidence brings ozone toward the surface, 
causing the column amount to increase. By 
mid-July, reduced precipitation [elevated out-
going longwave radiation (Fig. lB, squares)] 
led to drought conditions over Indonesia and 
an outbreak of wildfires (21). 

Ozone and smoke aerosol vary greatly, 
and not always in phase, during the most 
intense burning (late July to early November 
1997) (Fig. 1A). Six phases in the relation 
between smoke aerosol and TTO are distin-
guished, beginning with aerosol and ozone 
increasing together (Phase 1, Fig. 1C) as 
photochemical reactions take place among 
ozone precursors emitted by the fires (32-
34). Phase 2 is marked by an aerosol increase 
and an ozone decline. This decoupling results 
from transport of ozone and smoke aerosol in 
different layers, a phenomenon suggested by 
Kita et al. (35), but not detectable in their 
analysis. There are several reasons why 
smoke aerosol and ozone and other trace 
gases sometimes diverge during the fires. In 
layers where TOMS detects dense aerosol, 
ozone may be depleted owing to heavy 
smoke (36). This can be seen during 19 to 27 
August 1997, when smoke aerosol stagnates 
over the Kalimantan (Indonesia) fires (Fig. 
2A) while high ozone spreads across western 
Indonesia and north toward southeast Asia. 
Evidently, during Phase 2, smoke aerosol was 
concentrated at -2 km (750 hPa), and ozone 
peaks are above where the reflecting smoke 
layer causes an increase in the rates of ozone-
forming photochemical reactions (20). For-
ward trajectories initialized with an air-parcel 
model (37) from the location of Kalimantan 
fires (black lines, Fig. 2A) show slow trans-

port of aerosol. Ozone (Fig. 2B) follows fast-
er 3-km (southerly) and 6-km (easterly) path-
ways. Southerly transport of ozone at 3 to 4 
km is confirmed by the 27 August 1997 
sounding at Watukosek, Java (17) (Fig. 2C). 

Phase 3, occurring in the first half of 
September (Fig. lC), marks a rapid in-
crease in both smoke and TTO, brought on 
by heavy burning over Kalimantan and 
Sumatra and, to a lesser extent, over New 
Guinea (black contour in Fig. 3A). Forward 
trajectories at 3 and 6 km (37) (Fig. 3A) 
during this phase indicate recirculation 
over the Indonesian maritime continent that 
allows smoke to accumulate and TTO to 

reach 70 DU by 15 September. TTO during 
Phases 4 and 5 (Fig. 1C) is 10 to 30 DU 
above the Indonesian average (dashed line 
in Fig. 4A), similar to model calculations 
(20) and to excess ozone reported by the 
Global Ozone Monitoring Experiment sat-
ellite (38). Phase 4 (Fig. 1C) shows TTO 
and smoke decoupled. Here, aerosol builds 
up in the boundary layer until there is a lull 
in fires during the last week of September. 
At 3 to 6 km, where ozone is concentrated 
(17), increased winds transport ozone to 
the Indian Ocean (Fig. 3B) and maximum 
TTO drops to 50 DU. Ozone maximizes in 
Phase 5 when fires pick up again after 10 
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Fig. 2. Phase 2 smoke aerosol (A) for 
a typical 9-day average in mid- to 
late August 1997(Phase 2 in Fig 1C). 
Stagnation of smoke plumes is indi-
cated by the small displacement of 
air parcels initialized from Kaliman-
tan fires at  -2 km. (B) Five-day 
forward trajectories (3and 6 km are 
indicated by solid and dashed Lines, 
respectively) superimposed on TTO 
from the 19 to 27 August 1997 pe-
riod show that the decline in ozone 
may result from export to  west and 
south. (C) The 3- to 4-km ozone 

-1 - peak in Watukosek (location denot-
90 100 110 150 ed by yellow star) sounding on 27 - U 

August 1997. 
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October (Fig. 3C). By late October 1997, 
three distinct plumes-from Kalimantan-
Sumatra-Malaysia, Africa (high TTO, 10' 
to 15"s) (Fig. 3, A to C), and New Guinea-
merge into a single feature extending to Sri 
Lanka and India (Fig. 3D). Ozone sound-
ings verify that free tropospheric ozone 
increases in layers of varying intensity and 
thickness during October to November 
(17). Some ozone precursors reach 9 to 12 
km (34), but ozone above this altitude is of 
uncertain origin. The sharp TTO drop in 
early November 1997 (Fig. 1C) marks a 
return to typical values for that time of year 
(Fig. 5). 

The positive relation between anoma-
lously high Indonesian ozone and Southern 
Oscillation (Sol)  and Dipole Mode lndex 
(DMI) also appears in the 1979 to 1992 
Nimbus 7 TOMS record (7,29). The 1982-
1983 ENS0 and 1OD begin with low ozone 
(TTO -20 DU) (Fig. 4A), followed by an 
ozone jump when SO1 and DM1 increase. A 
second ozone increase accompanies en-
hanced fire activity (Fig. 4B). The TTO and 
smoke aerosol 1980-1990 time series show 
no statistically significant trend (39-42) 
over lndonesia or other regions (South 
America and Africa) where biomass burn-
ing is an important contributor to ozone 
formation (7). The lack of a tropospheric 
ozone trend is consistent with recent work 
(43, 44) that indicates no TOMS total 
ozone change in the tropics during 1979-
1992. 

Further examinationof the ozone-smoke re-
lation shows a general tendency for tropical 
ozone and smoke aerosol to be decoupled. The 
statistical model (39) used for analysis of 
1980-1990 trends also yields the annual cycle 
in tropospheric ozone and smoke aerosol (Fig. 
5). The regions selected straddle the equator so 
that both Northern and Southern Hemisphere 
burning seasons are captured. North of the 
equator biomass fires typically peak between 
December and April. To the south, fires peak 
between July and November. In none of the 
three regions illustrated is there a straightfor-
ward relation between the ozone maximum and 
peak burning. This is most evident over equa-
torial Africa, where the highest burning signal 
(January aerosol maximum) does not corre-
spond to the highest ozone (45). In all cases, 
maximum TTO occurs in September to Octo-
ber. Only over South America does this match 
local burning, and even there, the shoulder of 

90 1w 110 120 
high ozone that occurs in July to August prob-

m ably denotes ozone transported from Africa (4, 
0 

P Y R g: 2f 5). Besides intercontinental transport, offsets 
b 

Modlied-ReeldualTropospheric Ozone (DU) have been attributed to interhemispheric trans-
port, lightning, and large-scale dynamics (10,

Fig. 3. (A) High smoke aerosol (contoured where the index >2) and TTO. (B) Phase 3 (Fig. 1C)with 
declining ozone in late September 1997. Forward trajectories superimposed over ozone at 3 (solid 12-15)' the the inferenceisthat 

line) and 6 km (dashed line). In late September through early October, TTO declines when ozone burning, during in-
flows from Kalimantan toward Singapore, Malaysia, and the Indian Ocean. (C and D) Maximum tense episodes, is only one factor determining 
TTO is attained in Phase 5, and the plume extends to Sri Lanka and southern India. the tropospheric ozone column in the tropics. 
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Fig. 4. (A) Tropospheric ozone and (B) smoke aerosol, averaged twice monthly from the Nimbus 
7lTOMS instrument for three regions. Dashed lines represent deseasonalized trends from 1980 to 
1990, not statistically significant in TTO. The apparent increase in smoke aerosol may be an artifact 
of instrument drift (41); smoke increases in the 1990s are more likely (42). Trend calculations for 
Africa and South America (not shown) also show no ozone trend (7). 
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Fig. 5. Seasonal cycle based on 1980-1990 Nimbus 7KOMS TTO and smoke aerosol, derived from 
the same statistical model (39) used in Fig 4. 
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Synchronous Tropical South 

China Sea SST Change and 

Greenland Warming During 


Deglaciation 

M. ~ienast,'*S. ~teinke,' K. Stattegger,' S. E. Calvert' 

The tropical ocean plays a major role in  global climate. It is therefore crucial 
t o  establish the precise phase between tropical and high-latitude climate vari- 
ability during past abrupt climate events in  order t o  gain insight into the 
mechanisms o f  global climate change. Here we present alkenone sea surface 
temperature (SST) records from the tropical south China Sea that show an 
abrupt temperature increase o f  a t  least 1°C at  the end of the last glacial period. 
Within the recognized dating uncertainties, this SST increase is synchronous 
wi th  the Belling warming observed at  14.6 thousand years ago i n  the Greenland 
Ice Sheet Project 2 ice core. 

Previous studies of the phase relation be- 
tween tropical and high-latitude warming 
during the last deglaciation came to con- 
trasting conclusions: the tropical ocean was 
either synchronous with ( I )  or led (2, 3) the 
Northern Hemisphere deglacial tempera-
ture increase. Antiphasing between changes 
in tropical Atlantic SST and temperature 
over Greenland is expected based on the 
bipolar see-saw mechanism (4). But 
the timing of deglacial SST increases in the 
Pacific and Indian Oceans relative to high- 
latitude warming is still controversial. On 
the basis of a radiocarbon-dated alkenone 
thermometry (UK,,)-SST record from the 
tropical northwestern Indian Ocean, Bard et 
al. (I) inferred an interhemispheric syn- 
chrony of deglacial warming in the Arabian 
Sea and Greenland, specifically during the 
Bslling Transition at the end of the last 
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glaciation. However, this Indian Ocean 
UK,,-SST change leads planktonic forami- 
nifera] S1'O from the same core (5) during 
this abrupt event. A similar lead of forami- 
nifera] MgICa-derived SST estimates ver- 
sus SI80, as well as the correspondence 
between equatorial Pacific foraminiferal 
MgICa and Antarctic temperature records, 
however, prompted Lea et al. (2) to postu- 
late a lead of tropical Pacific deglacial SST 
increase versus ice volume, and a syn-
chroneity with Antarctic warming during 
deglaciation. 

Here we present two high-resolution, 
accelerated mass spectrometry (AMS) I4C- 
dated UK,,-SST and foraminiferal S"0 
records (Fig. 1, A and B) (6) from the 
tropical southern South China Sea (SCS), a 
non-upwelling environment within the 
Western Pacific Warm Pool (WPWP), that 
cover the late glacial-to-Holocene transi--

Sediment 'Ores and 18287-3 
were retrieved from the southwestern 
(9'14'N, 109O23'E, 1273-m water depth) 
and southern (5"39'N, 11O039'E, 598-m 
water depth) SCS, respectively. According 
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