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CADS is an adaptor protein implicated in CD3 signaling because of its ability 
to  Link SLP-76 to LAT. A CADS-deficient mouse was generated by gene targeting, 
and the function of CADS in T cell development and activation was examined. 
CADS- CD4-CD8- thymocytes exhibited a severe block in proliferation but still 
differentiated into mature T cells. CADS- thymocytes failed to respond to CD3 
cross-linking in vivo and were impaired in positive and negative selection. 
lmmunoprecipitation experiments revealed that the association between SLP- 
76 and LAT was uncoupled in CADS- thymocytes. These observations indicate 
that CADS is a critical adaptor for CD3 signaling. 

The development and function of T cells are 
regulated by signaling through the CD3 com- 
plex, which serves both the pre-T cell recep- 
tor (pre-TCR) and the TCR [(I) and refer- 
ences therein]. Cross-linking of CD3 induces 
protein tyrosine phosphorylation in a wide 
range of proteins. Among these phosphoryl- 
ation targets are two adaptor proteins, LAT 
and SLP-76, which function in a coordinated 
fashion to activate a diverse set of signaling 
proteins (2-5). The critical function of SLP- 
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76 and LAT is supported by the observation 
that mice lacking SLP-76 or LAT exhibit an 
absolute block in early thymocyte develop- 
ment (6-8). 

The function of SLP-76 is dependent on 
its association with LAT (9-13). This associ- 
ation is mediated by an adaptor known as 
GADS, which contains two SH3 domains 
flanking a SH2 domain and a linker region. 
GADS associates constitutively with SLP-76 
through the binding of the GADS SH3 do- 
main, and is recruited to LAT through bind- 
ing of its SH2 domain to phosphotyrosine 
motifs on LAT upon TCR activation (9-11, 
13). Besides GADS, Grb2 and possibly Grap 
are also implicated as adaptors for SLP-76 
(4). Because mutant T cells or primary mast 
cells lacking LAT demonstrate reduced phos- 
phorylation of SLP-76 upon receptor activa- 
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tion (14-16), the association of SLP-76 with 
LAT may also couple to the induction of 
SLP-76 phosphorylation. 

To address the hnction of GADS in vivo, 
GADS-deficient mice were generated by a 
gene-targeting approach (Fig. 1A) (17). In 
contrast to SLP-76- mice, which frequently 
succumbto severe systemichemorrhageat an 
early perinatal stage (7, 18), GADS- mice 
were grossly healthy. 

GADS- mice had approximately fourfold 
fewer thymocytes than did wild-type litter-
mates (Fig. 1C). Fluoresence-activated cell 
sorting (FACS) analysis for CD4, CD8, and 
TCR-P chain .expression revealed that 
GADS- thymocytes exhibited several devel-
opmental defects (Fig. 1, D and E). GADS-

mice had a modest increase in the percentage 
of CD4-CD8- double negative (DN) thymo-
cytes and a decrease in the percentages of 
CD4 and CD8 single positive (SP) thymo-
cytes (Fig. ID). TCR-P chain staining re-
vealed a reduction in mature cells expressing 
high levels of TCR (Fig. 1E). In the periph-
eral T cell pool, CD4 T cells were most 
affected, with a reduction of up to 10-fold, 
whereas CD8 T cells were reduced by about 
twofold (Fig. IF). However, the total number 
of peripheral CD4 cells did accumulate over 
time, indicating that GADS is not critical for 
the survival of mature T cells. In contrast to 
its effect on T cell development, GADS de-
ficiency did not influence the development of 
B cells or other cell lineages (17). 
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(E) A severe reduction of TCRhigh thyrnocytes 
was detected in CADS- mice. (F) Reduction of 
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To characterize the developmental defect 
in the DN thyrnocytes of GADS- mice, we 
dissected the DN compartment using FACS 
analysis of CD44 and CD25 expression (19). 
As shown in +I+ mice, approximately 26% 
of the DN cells had progressed into the 
CD44-CD25- (pro-T4 stage) (Fig. 2A). In 
contrast, GADS- thymocytes exhibited a se-
vere developmental arrest at the CD44-
CD25+ (pro-T3) stage, the point at which 
pre-TCR signaling is first required (20, 21). 
Unlike RAG-2- thymocytes, which are ar-
rested in the DN stage, GADS- thymocytes 
were able to differentiate into DP cells (Fig. 
1C). This result suggests that GADS defi-
ciency does not severely compromise the dif-
ferentiation capacity of the pre-TCR. 

The severe reduction of pro-T4 cells in 
GADS- mice may have resulted from a spe-
cific defect in proliferation induced by the 
pre-TCR. To test this hypothesis, thymocytes 
gated on the pro-T3 subset were analyzed for 
cell size distribution. In contrast to wild-type 
cells, the GADS- pro-T3 population con-
tained significantly fewer large cells (Fig. 
2B), previously characterized as actively di-
viding precursors of pro-T4 cells (21). The 
defect in proliferation of the pro-T3 popula-
tion in GADS- mice was confirmed by com-
paring the DNA content of CD25+ DN thy-
mocytes (Fig. 2C). 

Cross-linking of CD3 in RAG-2- mice 
induces the differentiation and expansion of 
DN cells into DP cells, presumably by acti-
vating the pre-TCR signaling pathway (22). 
To examine whether GADS- thymocytes had 
defects in CD3 signaling, we compared the 
effects of CD3 cross-linking in vivo in wild-
type, RAG-2-, and GADS- mice. Wild-type 
mice injected with antibody to CD3 exhibited 
accelerated development of DN thymocytes, 
as shown by a significant increase in pro-T4 
cells (Fig. 2D). Cross-linking of CD3 also 
significantly promoted the development of 
RAG-2- thymocytes, resulting in an expand-
ed population of DP thymocytes (200 X lo6 
cells, n = 3). By contrast, GADS- mice 
treated with the antibody to CD3 exhibited no 
signficant change in the developmental pro-
file and none showed a significant increase in 
thymocyte numbers. Consistent with this ob-
servation, CD44ICD25 staining and cell size 
analysis revealed the lack of cellular expan-
sion in the pro-T3 and pro-T4 compartments 
(Fig. 2D). 

Cross-linking of CD3 in wild-type mice 
also induces cell death predominantly in the 
DP population, an effect thought to mimic 
thymic negative selection (Fig. 2E) (23). 
However, in vivo cross-linking of CD3 in 
GADS- mice did not induce a significant 
deletion of the DP thymocytes (Fig. 2E) and 
had no effect on the total number of thymo-
cytes. These results indicate that GADS is an 
integral part of CD3 signaling. Consistent 
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with this conclusion, CD69 up-regulation mice canying an (YPTCR transgene specific thymocyte numbers. In contrast, GADS-
was compromised in G A D S  thymocytes for the male H-Y antigen (24). In +/+ male HY+ thyrnocytes did not exhibit negative 
(17 ) .  HY mice, clonotypic T cells undergo exten- selection in male mice, as shown by the 

To test the function of G A D S  in thymic sive negative selection, resulting in the severe persistent DP population (Fig. 3A). The abil- 
selection, G A D S  mice were crossed with depletion of D P  cells and greatly diminished ity of G A D S  thymocytes to undergo positive 
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c GADS-	 Fig. 2. Defects in pre-TCR and TCR signaling. (A) Dissection of the DN subsets 

with CD44lCD25 immunostaining. (B) Reduction of cycling cells in CADS- thy- 
mocytes as revealed by cell size distribution in the CD44'OWCD25+ (pro-T3) 
population. (C) Purified DN thymocytes were stained with propidium iodide (PI) 
t o  reveal DNA content (29). (D) CADS- DN thymocytes did not respond t o  CD3 

4N 	 cross-linking in vivo. Four-week-old female littermates (n = 3) were injected 
"I 	 peritoneally with 2C11 antibodies t o  CD3 (250 kg) and analyzed 3 days afterward 

for CD44lCD25 profile as described above. (E). Same group of mice as in (D) was 
analyzed for CD3-induced deletion of CD4+CD8+ thymocytes. 

0 200 400 600 800 1000 

PI (DNA Content) 

Female
Male 

Thymus
Thymus 

Fig. 3. Thymic selection is severely impaired in GADS- thymocytes. 	 48 x l o 6  57 x 106 
(A) Failure of negative selection in HY+ CADS- male mice. Panels 
display CD4lCD8 plots of thymocytes gated positive for the trans- 
genic HY TCR. Total thymocyte numbers are indicated. All mice spleenexamined were littermates at  8 weeks old. (B) Failure of positive 
selection in HY+ CADS- female mice. (C) Lack of clonotypic periph- 
eral CD8 T cells in CADS- mice. 
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selection in HY transgenic female mice, 
which lack the H-Y antigen, was also exam- 
ined (Fig. 3B). In contrast to the wild-type 
HY+ thymocytes, which underwent positive 
selection to become predominantly CD8 T 
cells, GADS- HY+ thymocytes failed to de- 
velop into mature CD8 cells (Fig. 3B). Sim- 
ilar defects in the postive selection of CD4 T 
cells were observed in transgenic mice ex- 
pressing the DO1 1.10 TCR (25). 

To investigate whether these defects in 
thymocyte development and activation are 
consistent with the adaptor function of 
GADS, we examined whether SLP-76 phos- 
phorylation or association with LAT was 
compromised in GADS- thymocytes. Cell ly- 
sates fiom total thymocytes activated by CD3 
cross-linking were immunoprecipitated for 
SLP-76 and immunoblotted with an antibody 
to phosphotyrosine. Upon CD3 cross-linking, 
GADS- thymocytes exhibited a significant 
increase in SLP-76 phosphorylation, which 
indicates that GADS is not required to medi- 
ate SLP-76 phosphorylation (Fig. 4A). De- 
spite this observation, the association of SLP- 
76 with a phosphoprotein of approximately 

A IP: a-SLP-76 
Blot: a-pTyr 

WT GADS- 
CD3 
crosslinking: I ' + 'I ' + ' 

40 kD was specifically reduced. Based on the 
molecular size and the pattern of induced 
phosphorylation, this 40-kD species is most 
likely to be LAT. Unfortunately, a direct 
demonstration of the LAT identity is restrict- 
ed by the sensitivity of immunoblotting assay 
required for the detection of LAT in the 
trimolecular SLP-76/GADS/LAT complex. 
Based on the interaction between Grb2 and 
SLP-76 in vitro (4), it is possible that Grb2 
may substitute for GADS in the GADS-defi- 
cient cells. We investigated this possibility by 
immunoprecipitating Grb2 fiom total thymo- 
cytes and immunoblotting for SLP-76 or SoS, 
but found no evidence of increased Grb2 
association with SLP-76 (1 7). 

Biochemical studies suggest that ITK 
bound to SLP-76 is recruited to LAT in order 
to phosphorylate and activate PLC-yl (3, 
26). In accordance with this .model, GADS- 
thymocytes exhibited significantly reduced 
PLC-y1 phosphorylation (Fig. 4B), and 
GADS-deficient T cells failed to flux calcium 
upon CD3 activation (Fig. 4C). GADS- T 
cells activated with antigen proliferated to an 
extent comparable to that of the wild type 
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(25), a result that may be due to compensa- 
tion during thymic development. Inducible 
gene targeting of GADS is required to further 
address this possibility. Although GADS is 
also expressed in the B cell lineage (11), our 
analysis indicated that GADS is not required 
for B cell activation (1 7). 

This study provides genetic evidence that 
GADS is important for pre-TCR and TCR 
signaling. Mice deficient in GADS exhibit 
less severe defects, such as the lack of hem- 
orrhage and the presence of DP and SP thy- 
mocytes, than do mice deficient in SLP-76. 
Such a phenotypic difference indicates that 
not all functions of SLP-76 are mediated 
through GADS. Despite the importance of 
GADS in the various aspects of thymocyte 
development, there is only a four- to sixfold 
reduction in total thymocyte number. This 
moderate reduction in thymocyte number 
may be due to the lack of efficient positive 
selection, which impairs the maturation of 
DP thymocytes; combined with the lack of 
negative selection, which limits the deletion 
of self-reactive thymocytes. GADS deficien- 
cy has a more pronounced effect in the mat- 
uration of the CD4 than the CD8 lineage. It 
has been proposed that the Ras pathway may 
quantitatively regulate the development of 
the CD4 and CD8 lineages (27). In this con- 
text, it is important to note that Ras activation 
by the SLP-76/LAT complex is regulated by 
at least two different pathways: one via Grb2- 
SoS bound to LAT and the other via RasGRP 
(28), which is activated by diacylglycerol and 
in principle lies downstream of PLC-yl, 
whose activation is dependent on GADS- 
SLP-76. It will be interesting to address the 
differential effects in the maturation of CD4 
and CD8 cells caused by these two pathways. 
Finally, the observation that LAT (14, 15), 
but not GADS, is required for the optimal 
phosphorylation of SLP-76 suggests that 
LAT has a yet-undefined role in SLP-76 phos- 
phorylation. Further studies on the mecha- 
nism of SLP-76 phosphorylation may provide 
insight into this issue. + GAD% 1 thymocytes &erea cross-linked .- I !  *, with anti-CD3 biotin at 4°C 

followed by activation with 
b 

I 
streptavidin at 37°C for 2 min. 

15 . e * +  
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