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Neutron scattering is used to characterize the magnetism of the vortices for the 
optimally doped high-temperature superconductor La,-xSrxCuO, (x = 0.163) in 
an applied magnetic field. As temperature is reduced, low-frequency spin fluc- 
tuations first disappear with the loss of vortex mobility, but then reappear. We 
find that the vortex state can be regarded as an inhomogeneous mixture of a 
superconducting spin fluid and a material containing a nearly ordered antifer- 
romagnet. These experiments show that as for many other properties of cuprate 
superconductors, the important underlying microscopic forces are magnetic. 
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superconductors rely on their ability to carry field, below which the superconductor ex-
electrical currents without dissipation even in cludes magnetic flux entirely. In such high 
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magnetic fields, superconductors are in a 
mixed state or "vortex lattice," comprising an 
array of cylindrical inclusions (vortices) of 
normal material in a superconducting matrix. 
Vortex lattices have two magnetic aspects. 
The first is that there are magnetic field gra- 
dients due to the inhomogeneous flux pene- 
tration; each vortex allows a magnetic flux 
quantum to penetrate, and the magnetic field 
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decays from the vortex center into the su- 
perconductor over a distance of order the 
London length h (I). h is the depth beyond 
which the superconductor excludes small 
fields and is typically between 100 and 
1000 nm. The second aspect is that the 
electron spins in the nonsuperconducting 
cores should no longer be paired coherently 
(as they are in the superconducting state). 
The length scale for this microscopic mag- 
netic effect is the radius 5 of the Cooper 
pairs, which underlie the phenomenon of 
superconductivity. 5 ranges from 100 nm- 
common for conventional, low transition 
temperature (T,) superconductors-down 
to nearly 1 nm, which is found for the 

Temperature (K) 

high-Tc copper oxides. Most magnetic mea- 
surements of the flux lattice state, including 
images from neutron diffraction and mi- 
croscopy of magnetic nanoparticles depos- 
ited on samples threaded by vortices, are 
sensitive primarily to the mesoscopic field 
gradients characterized by X (2-5). Much 
less is known about the microscopic mag- 
netism of the vortices. The associated spin 
correlations and dynamics are important 
because they mirror the internal structure of 
the vortices and, in superconductors with 
strong magnetic interactions, they are like- 
ly to dominate vortex state energetics and 
thermodynamics. Thus motivated, we per- 
formed an experiment that images the spin 
correlations in the vortex state of the sim- 
plest high-temperature superconductor, 
La,~,Sr,CuO,. The key finding is that, in 
broad agreement with theory (6-8), the 
vortex state for our optimally doped sample 
(x = 0.163, superconducting transition 

A 
Wavevector = 4 

Wavevector [h,O] -+ 
Fig. 1. Phase diagram and wave vector map 
of Lal,3,Sro~l,3Cu0,. (A) Red irreversibility 
line in the H-T plane, which separates the 
resistive normal or vortex fluid state from the 
superconducting state. Red circles come from 
the magnetotransport measurements (Fig. 
4A) and mark the temperatures where non- 
zero resistivity is first detected for a given 
field. We also show the data (red squares) of 
Ando and co-workers (70) for a x = 0.17 
sample. The blue arrow represents the trajec- 
tory of the H = 7.5 T temperature scan (Fig. 
4C). (B) Reciprocal space for the supercon- 
ducting CuO, planes of Lal,3,S~o,l,3Cu0, as 
probed by our neutron-scatter~ng measure- 
ments. Spin fluctuations are observed at a 
quartet of incommensurate wave vectors in- 
dicated, by the red circles. The solid black arc 
shows the wave vectors measured in a typical 
constant-energy scan (see Fig. 3), and the 
green ellipse represents the instrumental res- 
olution. The magnetic field was applied per- 
pendicular t o  the CuO, planes, and the blue 
dots indicate the reciprocal lattice associated 
with the H = 7.5 T vortex state. 

B Low-energy field-induced signal t . . r  

Energy (meV) 

Fig. 2. Constant-wave vector scans plotted 
as functions of energy. The energy resolution 
is 0.4 meV full-width-at-half-maximum. (A) 
The magnetic susceptibility X" measured at 
the incommensurate peak Q,, in zero applied 
field for both the superconducting state (red 
circles) and the normal state (red triangles). 
X" was also measured in a magnetic field of 
H = 7.5 T at T = 7.7 K (blue circles). The blue 
line through the data corresponds t o  the 
dam ed harmonic oscillator EgEyl((E - E:), ! + E y2) (with E, = 4.3 2 0.5 meV and y = 
4.3 2 0 3  meV), which models the magne- 
tism of the vortices, plus the gapped form 
described in (IS), t o  account for the remain- 
ing superconducting signal. The dashed red 
line is the form from (15) alone and describes 
the gapped spin-fluid-like response of the 
superconductor a t  H = 0 T. The dotted red 
line is the quasi-elastic response Er/(E + 
r 2 )  (with r = 9 meV), which was used 
previously t o  account for the normal state 
signal (75). (B) The difference between the 
H = 7.5 T and H = 0 results at low T. The 
solid blue line is the difference between the 
blue and dashed red lines in  (A). 

temperature T, = 38.5 K) has much stron- 
ger tendencie; toward magnetic order than 
the normal or the superconducting state. 

We used inelastic neutron scattering to 
measure X" (the Fourier transform of the two- 
spin correlations divided by the Bose factor) 
as a function of momentum and energy. The 
superconducting CuO, planes of our sample 
were placed in the horizontal scattering plane 
of a neutron-scattering spectrometer, and the 
magnetic field H was applied perpendicular 
to these planes in the vertical direction (9). A 
sliver of one crystal was used for magneto- 
transport measurements, and these measure- 
ments were combined with earlier data for 
x = 0.17 (10) to establish the H-T phase 
diagram (Fig. 1A). The electrical resistance 
vanishes below an irreversibility line (II), 
which is a very rapid function of applied 
field, so that even for fields well below the 
upper critical field Hc2 (defined here as the 
field at which nonzero resistivity is first de- 
tected), the vortex lattice required for macro- 
scopic superconducting phase coherence and 
perfect conductivity does not occur until T is 
well below T,(H = 0) = 38.5 K, the zero- 
field transition temperature. 

La1,837Sr0.163Cu04 displays spin fluctua- 
tions peaked at a quartet of x-dependent char- 
acteristic wave vectors given by Q8 = ($1 + 
61, i) and (k, (1 + 6)) with 6 = 0.254 (12, 
13) (Fig. 1B). Superconductivity has several 
effects on the magnetic fluctuations, the most 
pronounced of which is that an energy gap, A, 
appears in the spectrum (14, 15) (Fig. 2A). 
On cooling from T,  = 38.5 K to 5.5 K in zero 
field, the normal state continuum is eliminat- 
ed below A = 6.7 meV. Application of a 
7.5-T field fills the gap at base temperature 
with a spectrum whose amplitude is little 
different from that seen in the same energy 
range in zero field at T,. This means that the 
vortex state for a field far below the upper 
critical field Hc2 = 62 T (1 9, where the vortex 
cores presumably occupy a small volume fiac- 
tion of the material (HIH, = 12%), displays 
low-frequency magnetic fluctuations of roughly 
the same strength as the ungapped normal state. 
The difference plot (Fig. 2B) shows that the 
field-induced signal peaks at 4.3 2 0.5 meV 
and decays to zero as E approaches either 0 or 
A. This characteristic energy is approximately 
half that of the normal state, indicating that the 
fluctuations in the field are two times slower 
and manifest a greater tendency toward antifer- 
romagnetic order. 

To understand the spatial nature of the 
field-induced sub-gap fluctuations, we per- 
formed scans for fxed energy transfer as a 
function of wave vector along the solid black 
trajectory (Fig. 1B). At low temperatures and 
energies below the gap (T = 6.6 K, E = 2.5 
meV), a field of H = 7.5 T (Fig. 3A) induces 
sharp peaks at the same wave vectors where 
the normal state response is maximal (Fig. 
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3B). We also investigated the magnetic cor- 
relations just above the spin gap at 7.5 meV 
and find that the field has no discernible 
effect on the magnetic correlations at this 
energy (Fig. 3, C and D). 

Closer examination of Fig. 3, A through 
D, yields a wealth of quantitative informa- 
tion about the microscopic magnetism of 
the vortex state. First, the preferred period- 
icity, derived from the peak positions Q, of 
the magnetization density, is 218 = (7.86 + 
0.18)a0, where a, = 3.777 A is the Cu2+- 
Cu2+ separation. This value is indistin- 
guishable from the periodicity found for the 
normal state. Second, the scattering profile 
is slightly different from that measured at 
38.5 K for H = 0, in that the peaks seem 
sharper in the vortex state even though the 
scattering between the peaks has the same 
amplitude when scaled to the peaks. In- 
deed, the peaks are as sharp as the instru- 
mental resolution permits, implying that 
the principal (period 218) magnetization 
oscillations in the vortex state are coherent 
over distances 1, > 20a0, to be contrasted 
with distances 1, = (6.32 2 0 . 2 2 ) ~ ~  for the 
normal state (IS). For comparison, the lat- 
tice constant for a well-formed (Abrikosov) 
vortex state is a, = (2@01GH)1'2, where 
the magnetic flux quantum @, = 2067 
T(nm)2. At 7.5 T, a, = 4 7 . 2 ~ ~ ~  a number 
much larger than 216 but potentially similar 
to I... 

We also measured the temperature de- 
pendence of the field-induced response. 
Figure 4 shows electrical resistivity as well 
as neutron data, collected with wave vector 
and energy fixed at Q, and 2.5 meV, re- 
spectively. At H = 0, the neutron signal 

undergoes a sharp drop starting at T, (Fig. 
4C) [which is where the transition to zero 
resistance also occurs (Fig. 4A)], and dwin- 
dles into the background below 15 K. A 
field of H = 7.5 T has a large effect on the 
temperature evolutions of both the resistiv- 
ity and the neutron intensity. The resistivity 
descends steadily as temperature decreases 
between T, and 30 K (Fig. 4A) and does not 
have its final inflection point, as measured 
by dp,,ldT (Fig. 4B), until 25K, which is 
also where irreversibility sets in. This in- 
flection point has been found (I 6) to coin- 
cide with the drop in the magnetization 
associated with the freezing transition of 
vortices; above the freezing point, the im- 
posed current loses energy via vortex mo- 
tion. whereas below. the vortices are 
pinned and the current is dissipationless. 
The corresponding magnetic neutron scat- 
tering signal (Fig. 4C), which is slightly 
suppressed at T > T,, remains close to its 
normal state value for T,  > T > 25 K, and 
undergoes a sharp decline below 25 K. 
Thus, our spin signal, a microscopic probe 
of vortices, tracks a macroscopic mea- 
sure-namely the electrical resistance-of 
vortex freezing (1 7). 

How can our microscopic results be 
connected to the bulk data? In the vortex 
fluid state for T > 25 K, all Cu2+ sites are 
visited occasionally by vortices, which then 
depart. While at the sites, the vortices es- 
tablish a decaying (in time) magnetization 
density wave, the quantity to which our 
experiment is sensitive. Thus, all Cu2+ 
sites would have some memory of visits by 
vortices. When the inverse residence time 
r-I of a vortex at any site approaches the 

Fig. 3. Constant-energy 
scans plotted as a func- 4 8 
tion of wave vector along 3 
the black trajectory $ 3 
shown in Fig. 1B. (A) The 

6; 

$ 2  4'- susceptibility measured g 
for T = 6.6 K, below the =, 1 2- k 
energy gap. The data are 
sums of scans for E = 1.5, O 0 -* 
2.5, and 3.5 meV. In zero 
field (red circles) the sus- 
ceptibility is completely 4 8 
suppressed by supercon- " - 
ductivity and application 5 6 "  

8 
of a 7.5 T field (blue cir- 

2 4 i  cles) induces a sub-gap 9 
signal. For comparison, 'x l 2? 

-x the normal state suscep- o 
tibility is shown in (B). (C 
and D) The susceptibility 
above the energy gap at -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

E = 7.5 meV in both the h in &[1/2+(6/2+h)/2,1/2+(S/2-h)/2] 
normal and supercon- 
ducting states, respectively. The lines in all frames except (A) are the resolution-corrected 
Sato-Maki lineshape (32); for H = 0, the width parameters were fixed at the values established 
from the higher resolution data of (75). The solid blue line in (A) is the fit to the normal state data 
from (B), scaled to match the peak amplitudes, whereas the dashed blue line consists of two 
resolution-limited peaks. The red line in (A) is zero. 

frequency of the measured spin fluctua- 
tions, the fraction of sites with such mem- 
ory will begin to significantly exceed the 
fraction HI%, of sites covered by vortices 
at a given instant. The resistivity data in 
Fig. 4A yield the crude estimate of 2.5 meV 
for fir-I at 30 K (18), which happens to 
coincide with fio in Fig. 4C. As T is cooled 
below 25 K, the vortices become pinned via 
a combination of their mutual interactions 
and intrinsic disorder, such that they are 
always present at certain sites and never 
present at others. The outcome is then that 
sub-gap magnetization fluctuations occur 
only near the relatively small fraction of 
sites where vortices are pinned and the rnag- 
netic response is correspondingly reduced. 

Although observing vortex freezing via 
the electron spin correlations is unprece- 
dented, an even more fascinating phenom- 
enon occurs below 10 K. Here, the decline 
of the signal below the freezing transition is 
reversed, resulting in a susceptibility equal 
to the normal state x". Macroscopic mea- 
surements (10) do not indicate any changes 

0 10 20 30 40 50 
Temperature (K) 

Fig. 4. Temperature-dependent electrical 
transport and neutron data. (A) The in-plane 
resistivity data collected at a variety of fields 
from H = 0 to 9 T. (8) The derivative of the 
in-plane resistivity with respect to tempera- 
ture at H = 7.5 T, which is the field used in 
the neutron-scattering experiment. (C) The 
magnetic susceptibilities X" at Q = Q, and 
below the energy gap at E = 2.5 meV, for 
H = 0 T (red circles) and H = 7.5 T (blue 
circles). 
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in the vortex order or dynamics. Therefore, 
whereas they can plausibly account for the 
abruptly falling signal near 25 K, such 
changes cannot be responsible for the rising 
signal below 10 K. We conclude that the 
low T increase can only follow from chang- 
es in the magnetism of the frozen vortex 
matter, and we speculate that its most likely 
cause cannot be the relatively large mag- 
netic interactions we suspect exist within 
individual vortices, but rather the weaker 
interactions between spins in different vor- 
tices that become relevant only at low T. 

Our data show that a modest field in- 
duces extraordinary sub-gap excitations in 
the optimally doped high-T, superconductor 
Lal~83,Sro~163Cu04.There are several pos- 
sible origins for such excitations. The first 
are the quasiparticles inhabiting the vortex 
cores, which in conventional superconduc- 
tors are simply metallic tubes with finite- 
size quantization of electron orbits perpen- 
dicular to the tube axes (19, 20). The sec- 
ond, thought to be responsible for the <H 
low T specific heat in d-wave superconduc- 
tors, is due to the nodal quasiparticles 
whose energies are Doppler-shifted by the 
supercurrents around the vortices (21). The 
third is that the cores are small antiferro- 
magnets, but because of finite size quanti- 
zation and the weak magnetic interactions 
between planes as well as between vortices 
within the same planes, the antiferromag- 
netic correlations are dynamic and are char- 
acterized by finite oscillation frequencies 
and relaxation rates. The quasiparticles of 
the first possibility are excluded because 
the signal we measure is comparable to that 
found in the normal state, giving a super- 
conducting-to-normal state signal ratio, 
which is much larger than the volume frac- 
tion Hllf, occupied by vortices in such 
models. The second possible origin has an 
analogous difficulty with the low T-specific 
heat C, which does appear to follow the 
d-wave prescription for our samples (22). 
The ratio of the low temperature (for 7.5 T) 
and paramagnetic phase Sommerfeld con- 
stants CIT is 15%, much less than the 100% 
ratio of field-induced low T-to-zero-field 
paramagnetic signals measured with the 
neutrons. This leaves us with the third op- 
tion in which we imagine the vortex state 
not only as an inhomogeneous mixture of 
paramagnetic and superconducting regions, 
but as a magnetically inhomogeneous mix- 
ture as well. The superconducting regions 
have a well-defined spin gap, whereas the 
paramagnetic regions contain fluctuations 
toward long-period magnetic order. This 
option better accounts for the observed sub- 
gap spectral weight than the other two sce- 
narios. Specifically, we estimate that the 
net sub-gap weight [placed in absolute 
units using normalization to phonon scat-

tering (23)] integrated over energy and re- 
ciprocal space corresponds to 0.05p,il 
Cu2+, which is remarkably close to 
HIQ2~:D,S=112= 0.044~2, the product of the 
volume fraction occupied by the vortices and 
the square of the ordered moment k2,,,, ,= 
0 . 6 ~ ~found in insulating two-dimensional 
S = 112 Heisenberg antiferromagnets (24). 
In other words, the ordered moment that for 
the model insulator appears as an elastic 
Bragg peak, becomes a fluctuating moment 
manifested in the inelastic sub-gap peak for 
the vortex state of the superconductor. 

Although the simple picture of inclu- 
sions of finite-size vortices with large spin 
density wave susceptibilities accounts for 
many of our observations, the material in a 
field cannot be simply visualized as a su- 
perconductor perforated by an array of in- 
dependent, nearly antiferromagnetic cylin- 
ders with diameter given by the pair coher- 
ence length. First, the spin density period is 
of the order of the pair coherence length 5 ,  
and the magnetic correlation length is sub- 
stantially longer than 5 .  Second, the mag- 
netic field also induces broad scattering 
between the incommensurate peaks with a 
characteristic length scale of the order a,  
<< E Third, as described above, the low T 
rise in X" is difficult to explain without 
invoking weak interactions between the 
spins in "separate" vortices. The observa- 
tions together show that the spins in the 
vortices are correlated over a variety of 
length scales from the atomic to the meso- 
scopic. The most natural explanation is that 
the vortices themselves are highly anisotro- 
pic objects, or, at the very least, have a 
highly anisotropic effect on the spin corre- 
lations in the intervening superconducting 
regions. Such anisotropy is consistent with 
a d-wave pairing state, although it has not 
been detected in scanning probe images of 
vortices of high-T, superconductors (25, 
26). 

We have measured the microscopic spin 
correlations associated with the vortex state 
in the optimally doped single-layer high-rc 
cuprate La,,,,Sr0 ,,CuO,. We found that on 
cooling in a modest field, low-energy spin 
fluctuations are suppressed not near the 
zero-field transition but at the irreversibil- 
ity line below which the superconductor is 
in a true zero resistance state. This links the 
development of the spin gap more to super- 
conducting phase coherence-required for 
zero electrical resistance-throughout the 
sample than to local pairing. A second dis- 
covery is that at low temperatures, the vor- 
tex matter exhibits a rising tendency toward 
the magnetic order found for the "striped" 
state (27-29) with x = 118. This implies 
that in the H-T plane, the critical line sep- 
arating frozen from fluid-like "vortex" 
states may actually mark mesoscopic phase 

separation-or "gellation"-into a nearly 
magnetic vortex network bathed in a super- 
conducting quantum spin fluid. 
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