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Genealogical and Evolutionary Inference 
with the Human Y Chromosome 

Michael P. H. Stumpf' and David B. Coldstein2* 

Population genetics has emerged as a powerful tool for unraveling human 
history. In addition to the study of mitochondrial and autosomal DNA, 
attention has recently focused on Y-chromosome variation. Ambiguities 
and inaccuracies in data analysis, however, pose an important obstacle to 
further development of the field. Here we review the methods available 
for genealogical inference using Y-chromosome data. Approaches can be 
divided into those that do and those that do not use an explicit population 
model in genealogical inference. We describe the strengths and weakness- 
es of these model-based and model-free approaches, as well as difficulties 
associated with the mutation process that affect both methods. In the 
case of genealogical inference using microsatellite loci, we use coalescent 
simulations to show that relatively simple generalizations of the mutation 
process can greatly increase the accuracy of genealogical inference. Be- 
cause model-free and model-based approaches have different biases and 
limitations, we conclude that there is considerable benefit in the contin- 
ued use of both types of approaches. 

Genetic data increasingly augment linguis- 
tic, archaeological, and paleontological ev- 
idence in efforts to reconstruct the history 
of the human species. Over the past decade, 
the nonrecombining part of the Y chromo- 
some has become a critical tool in the study 
of human evolution (1-3). The Y chromo- 
some is inherited patrilineally (fathers to 
sons) and therefore carries information 
about the evolutionary past of males, com- 
plementing information carried by the ma- 
trilineal mitochondrial DNA (mtDNA) 
molecule. 

The nonrecombining euchromatic part of 
the Y chromosome is almost 35 Mb long (4). 
Two randomly chosen Y chromosomes will 
differ on average at one nucleotide site every 
3000 to 4000 bases. The Y chromosome 
therefore has an essentially unlimited supply 
of mutations that have been termed unique- 
event polymorphisms (UEPs) to reflect their 
low rate of occurrence. UEPs include both 
single-nucleotide polymorphisms and indels, 
and because they tend to have a unique mu- 
tational origin in samples of realistic size, 
they unambiguously define related groups of 
chromosomes, termed haplogroups (5). To- 
gether with rapidly evolving microsatellites 
(defining haplotypes), this makes the Y chro- 
mosome a uniquely powerful tool in the study 
of human evolution (2, 3). In addition to fine 
genealogical resolution, the Y chromosome 
also appears to show greater geographic 
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structure than mtDNA and autosomal sys- 
tems (I,  2, 6-8), although the data are not yet 
sufficient to fully assess the differences at 
different spatial scales. This pattern may re- 
sult from greater female than male migration 
rates, as has been reported in some traditional 
societies (7, 8), but other explanations have 
been suggested. Whatever the cause, consid- 
erable structure in human Y-chromosome 
data has been observed in many parts of the 
world (2, 6-25). 

The differences in structuring of different 
marker systems imply that certain aspects of 
demographic history may be detectable only 
in the paternal (or in some cases maternal) 
genetic record. For example, the Y chromo- 
somes of the Basques, thought to be a relic 
Paleolithic population, show remarkable sim- 
ilarity to those of present-day Celtic-speaking 
populations (24, 25). However, mtDNA and 
X-chromosome variation suggest that the 
Celtic populations cluster with other North 
European populations, but with the Basques 
again distinct. One explanation for this dif- 
ference is that the Paleolithic connection be- 
tween the Celtic speakers and the Basques 
has been eliminated by female-mediated gene 
flow, and is now only observable in the pa- 
ternal record. 

There are two overlapping but distin-
guishable uses of Y-chromosome variation in 
the study of human evolution. In some cases 
the Y chromosome, or any other locus, may 
be used to infer population parameters, such 
as the growth rate of the population. It has 
been argued, however, that single-locus sys- 
tems are not well suited to this purpose be- 
cause (i) they represent only a single realiza- 
tion of the evolutionary process and therefore 
inherently lack statistical power, and (ii) se- 

lection may interfere with the expected cor- 
relation between the genealogy at a single 
locus and the demography of the population. 
Population parameters, therefore, are best es- 
timated using data from multiple genomic 
regions (26). In other situations, however, the 
genealogy (Fig. 1A) may be of interest in its 
own right. This might occur, for example, in 
evaluating hypotheses concerning when spe- 
cific lineages first spread geographically, or 
in assessing which populations have the old- 
est lineages at a given locus. For example, the 
consistent observation that the deepest 
branches in both the Y chromosome and 
mtDNA gene genealogies are found in Afri- 
ca, together with the relative shallowness of 
these genealogies, has been taken as strong 
evidence in support of a recent African re- 
placement model for the origin of anatomi- 
cally modem humans. Genealogical depth 
may also be of interest in genetic evaluations 
of oral traditions. For example, Y-chromo- 
some genealogical depth was used to assess 
the date of origin of patrilineal inheritance of 
priestly status among the Jewish priesthood 
(cohanim) (5). 

Our primary focus here is inferring as-
pects of Y-chromosome genealogies, as op- 
posed to the use of Y-chromosome genealo- 
gies to infer population parameters. However, 
except in unusual circumstances-for exam-
ple, very rapid population expansion from 
small size-it is extremely difficult to draw 
direct connections between inferred genealo- 
gies and population processes (2, 6). In par- 
ticular, casual equations between historical 
migrations and Y-chromosome lineages 
should be treated with considerable caution. 
Instead, genealogical data are better suited to 
test very specific hypotheses. For example, a 
test of whether genealogical structure corre- 
sponds to the geographic origin of sampled 
chromosomes can be used to assess whether 
lineages were or were not recently distributed 
through their geographic range (15, 20). Fi-
nally, we note that many applications require 
translating genealogical depth from genera- 
tions into years, which introduces a signifi- 
cant source of uncertainty because of our 
ignorance of the life-styles of past human 
societies. 

Methods used in genealogical inference 
can be conveniently separated into two 
groups: those based on explicit population 
models, and those that do not rely on assump- 
tions about population history. Both ap-
proaches must assume a model for the muta-
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tion process, but only the former explicitly 
specifies the demography. 

In the absence of an appropriate popula- 
tion model, genealogical parameters can still 
be estimated using approaches that do not 
explicitly specify a demography. For con- 
venience we refer to these approaches as 
model-free, but this refers only to the ab- 
sence of a population model. In this case, a 
sample of alleles is assumed to result from 
some genealogy (Fig. 1 A), aspects of which 
are inferred from summary statistics of the 
observed data such as painvise distance 
measures. Model-free approaches make 
only limited use of the data (27, 28) and do 
not use knowledge of population genetics. 
For illustration, we focus on three genea- 
logical characteristics (Fig. 1A): (i) the 
time to the most recent common ancestor 
(TMRCA) of the whole sample, (ii) the 
ages of UEP mutations, and (iii) the 
TMRCA of the lineages within each (UEP- 
defined) haplogroup. All properties can be 
inferred using population models, but mod- 
el-free approaches provide reasonable esti- 
mates only for a subset of properties; for 
example, in Fig. lA, model-free approach- 
es may be used to estimate TMRCA of the 
whole sample and of the alleles belonging 
to a particular haplogroup, but cannot give 
meaningful estimates of property (ii) 
above. 

Model-Based Approaches 
In model-based approaches, in addition to 
the observed data, a specific population 
model (or class of models) is assumed to be 
responsible for the ancestral history of the 
sample. Model-based approaches may be 
used in a Bayesian or likelihood (frequen- 
tist) framework. As the former may be less 
familiar, we briefly review its structure. 
The ancestral relationship is understood to 
be specified by a set of random variables, 
0, for which a prior (i.e., a prior probability 
distribution function) can be set indepen- 
dently of the sample-for example, by co- 
alescent theory for aspects of the genealo- 
gy, or often by assumption in the case of 
the mutation rate. Population genetics the- 
ory is then used to estimate the likelihood 
of the observed data as a function of the 
values of 0. In realistic settings, these like- 
lihoods must be estimated through numer- 
ical simulations. For example, importance 
sampling or Markov chain Monte Carlo 
procedures may be used. With the likeli- 
hoods determined, Bayes theorem can then 
be used to combine the prior and the like- 
lihoods into a probability distribution for 0 
known as the posterior (29). Point estimates 
and confidence intervals (CIS) for all rele- 
vant quantities follow from this posterior 
distribution. 

Determination of priors and likelihood 

surfaces, however, require assumptions about tation-drift equilibrium) should be applied to 
the population that is being modeled. For 
example, if the underlying model assumes 
size constancy, then a growing population is 
not represented adequately. The assumption 
of constancy would create a strong bias in 
favor of long branches toward the root and 
short branches at the tips, whereas rapidly 
growing populations have the opposite ten- 
dency. Unlike population growth (30), the 
effects of population structure are less pre- 
dictable, and geographically structured mod- 
els are difficult to justify. In the long term, 
model-based methods may permit evaluation 

simulated data generated under a range of 
more complicated models in a direct evaluation 
of the consequences of model specification. 

DNA sequence divergence. Focusing on 
sequence variation, Thomson et al. (34) used 
GENETREE (32, 35, 36) for Y-chromosome 
genealogical interference. The GENETREE 
program runs coalescent simulations, assum- 
ing either a stationary or growing population, 
and estimates a likelihood distribution for 
genealogical parameters by averaging over a 
large number of runs. Estimates of absolute 
genealogical time are obtained using an ex- 

of the most appropriate repiesentation of hu- ternal estimate of the point mutation rate, in 
man population structure by comparing the this case inferred using the sequence diver- 
support-for alternative models, and steps in 
this direction are already being taken. For 
example, programs such as FLUCTUATE, 
GENETREE, and BATWMG (31-33) all al- 
low for evaluation of the growth model, 
whereas MIGRATE permits estimation of the 
effective migration rate between populations 
(31). Given our current ignorance of the most 
appropriate models to represent human de- 
mography, however, continued use of the 
available inferential methods depends criti- 
cally on thorough evaluation of the conse- 
quences of model misspecification. In partic- 
ular, methods assuming available models 
(e.g., migration among N populations at mu- 

gence of chimpanzees and humans and as- 
suming a separation time of 5 million years. It. 
is worth noting that this procedure ignores the 
effect of lineage divergence within the ances- 
tral population giving rise to humans and 
chimpanzees, and that the statistical proper- 
ties of the estimated mutation rate have not 
been properly evaluated. 

Microsatellite data. A similar approach 
can be taken using microsatellite rather than 
sequence data (37). Here the mutation model 
presents a particular challenge: Whereas co- 
alescent simulations for DNA sequences gen- 
erally assume an infinite-sites or infinite-al- 
lele model (38) where back-mutations can be 

(ii) 

Fig. 1. (A) Genealogy of a sample of eight chromosomes with total depth T,. Chromosomes 1 to 
4 belong to one haplogroup defined by the UEP that occurred at time 5; their most recent common 
ancestor occurred at time T, < 5. (B) Genealogies for growing and constant populations. 
Uncorrelated lineages are shown in red; black branches trace the evolution of two or more 
present-day chromosomes. T indicates the time during which all lineages in the genealogy evolve 
independently. Estimates derived for the uncorrelated tree (i) will have narrower CIS than those for 
the correlated tree (ii). 
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ignored, the high mutation rate and the step- 
wise mutation process rule out such a repre- 
sentation for microsatellites. The rnicrosatel- 
lite allele lengths at each node in the gene- 
alogy are now also members of the random 
variable a, in addition to N, and p. Thus, 
the generalized microsatellite mutation pa- 
rameter is po2 (39), where 02 is the vari- 
ance of the distribution of step sizes, and 
the height and shape of the genealogy can 
be investigated simultaneously in this 
framework. Using this approach, Wilson 
and Balding (37) evaluated the genealogi- 
cal depth of human Y-chromosome geneal- 
ogies. Under conditions where the assump- 
tions of the population model are met, the 
quality of the estimate increases with the 
number of loci included in the study. When 
large sample sizes are used, the computa- 
tional cost is a serious constraint. 

Model-Free Approaches 
Because of our present ignorance of human 
demography and how to represent it, it is 
necessary to compare model-based approach- 

es with those that do not make assumptions 
about demography in genealogical inference. 
We discuss approaches that only assume the 
existence of a genealogy and that seek to 
estimate features of the genealogy from ob- 
served diversity. 

Microsatellite repeat variance and gene- 
alogical depth. The squared difference be- 
tween the lengths of two sampled alleles (li 
and 5) under a stepwise mutation model 
(SMM) has the expected value 

(39, 40), where 7 is the coalescence time of 
alleles i and j. Equation 1, evaluated for 
growing populations, is a reasonable estima- 
tor for TMRCA because the average painvise 
coalescence time is close to the time back to 
the most recent common ancestor (10) (Fig. 
1B). 

A variation of this approach, assuming a 
highly idealized demography, was developed 
(19) to study the situation in which a selective 
sweep brings a variant quickly to fixation, 
followed by a return to mutation-drift equi- 

Fig. 2. (A) Probability 
of the most frequent 1 
alleles in a haplogroup a 
being ancestral for in- s; 

haplogroups defined 
~ ~ E ~ s . n u ~ ~ ~ s i ~ ~  io 1 \ the number of haplo- t 0.6 
groups leads.to signif- 0 

icant improvement in 
the identification of ; 0.4 
ancestral alleles. Also rn 
shown are the mean S 
square errors of the 0.2 
haplogroup age esti- # 
mates using 20 micro- 
satellite loci and the p 
true (open squares) % 4 

and the inferred an- 
cestral allele (closed 
squares), respectively; 1 
diamonds represent 3 
estimates obtained for 9, 

30 loci and with the 2 
true ancestral allele. g 
The error decreases E 

0.6 with increasing num- 
ber of haplogroups 
and microsatellite loci. 0.4 
Genealogies of a Sam- - 
ple of 200 chromo- 0 

somes were simulated 0.2 
and mutations distrib- 

I 
uted following the mi- 1 
crosatellite mutation a 
Drocess with constant 
(I = 0.0028 across 20 
loci; numbers were av- I ' 

Number of haplogroups 

librium in a now constant population. With a 
sufficient marker density, this approach 
would also provide a framework for detecting 
selective sweeps anywhere in the genome. 
However, because of the very specific as- 
sumptions of this approach and that of Eq. 1, 
neither is suitable as a general method for 
dating Y-chromosome genealogies, as they 
have sometimes been applied. 

Ancestral haplotypes and present varia- 
tion. Irrespective of past population demog- 
raphy, TMRCA can be estimated if the hap- 
lotype of the most recent common ancestor 
can be inferred (5, 41). For example, if we 
know the allele lengths of the haplotype at 
node 2 in Fig. lA, then we can calculate the 
estimated time from nodes 1 through 4 back 
to the node at time T2. 

For a single locus, the squared distance is 
given by 

where 1, denotes the ancestral allele length 
and i refers to a present chromosome. Sum- 
ming Eq. 2 over the N present chromosomes 
yields the averaged squared distance (ASD), 

A = 1 / m ;  (li - la I2 (3) 
The squared difference in allele size, A, has 
the expected value 

A, = po27 (4) 
where A, is the ASD to the ancestral (A) 
allele and 7 is the genealogical branch 
length separating allele i from the most 
recent common ancestor of the sample. The 
average over all alleles, A,, is thus an 
unbiased estimator for TMRCA. In prac- 
tice, Eq. 4 would be evaluated for each of 
many loci and averaged. We note that the 
ASD was originally defined as an estimator 
of separation time between populations, but 
the related formulation (Eq. 3) can be used 
to estimate coalescent times between pairs 
of sampled alleles, which underlies both the 
interpopulation formulation (42) and Eqs. 3 
and 4 (5, 19, 43). 

Performance of model-free approaches. 
Model-free approaches have been widely 
used (5, 10, 15, 16, 19, 41), and here we 
evaluate the performance of the method de- 
scribed above for estimating genealogical 
depth. To evaluate model-free approaches, 
we use coalescent simulations with parame- 
ters designed to mimic the human Y-chromo- 
some genealogy. We distribute both UEPs 
and microsatellite mutations throughout the 
genealogy in order to simulate what is typical 
or achievable in real studies. In Fig. 2A, we 
show that Eqs. 3 and 4 yield very good date 
estimates for coalescence events for the sim- 

eraged over 500 independent runs. (B) As in (A), exce t that for.repeat length 1 we now assume ple SMM (for the strict, single-step mutation 
a length-dependent mutation rate p = (-6.62 + 0621fk, where k is an arbitrary constant (46.48). model with o2 = and p). InCreas- Identification of ancestral haplotype from most frequent alleles is now slightly less reliable, as 
larger alleles have higher mutation rates; the mean square error of the haplogroup age estimates ing the loci from 20 to 30 in 
shows a similar dependence on haplogroup age (increased number of haplogroups results in a n~odest decrease in the mean square emor, 
shallower haplogroup genealogies), as in the constant p case. but using fewer loci would normally lead to 
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significant increases in the mean square 
errors (44). 

In addition to the mean square errors of the 
estimates for TMRCA using the real ancestral 
alleles in Eq. 3, we also show the errors that 
result if the most common allele is assumed to 
be ancestral. In the analysis of real data, the 
ancestral haplotype is not known from the out- 
set, and inferring ancestral haplotypes from the 
most common alleles can be problematic- 
especially for stationary populations, where 
most mutations accumulate along the long an- 
cient branches of the genealogy. Expanding the 
number of UEPs, and hence the number of 
haplogroups, greatly increases the reliability of 
inferring ancestral haplotypes (Fig. 2A) from 
the most common alleles. 

Model-free approaches and confidence. 
Although likelihood approaches include a 
natural framework for assessing confidence, 
the difficulty of estimating CIS is a serious 
limitation for model-free approaches. More- 
over, point estimates (e.g., for TMRCA) may 
be unbiased regardless of the details of the 
genealogy under consideration, whereas the 
corresponding CIS depend strongly on the 
shape of the genealogy. Heuristic arguments 
for obtaining CIS in a model-free setting are 
given in (45). In the case of star genealogies 
with n sampled chromosomes, estimation of 
CIS is straightforward; there are roughly n 
independent random variables (Fig. 1B) and, 
irrespective of the process generating differ- 
ences among lineages, the problem can be 
simulated or calculated for n independent 
lineages. For example, for the SMM, for each 
lineage there will be a Poisson-distributed 
number of mutation events, whereas the num- 
ber of repeat size-increasing (and size-de- 
creasing) mutations shows a binomial distri- 
bution; it is thus possible to simulate the 
mutation process on n independent lineages 
and calculate approximate CIS from the dis- 
tribution of outcomes. In a correlated geneal- 
ogy, however, CIS will be much wider (Fig. 
1B). One approach for estimating how much 
wider (45) is to assess the effective number 
of lineages-that is, the number of lineages 
in an uncorrelated tree that would have prop- 
erties similar to the correlated genealogy. It 
should be noted that, ignoring an extreme 
bottleneck, the true CIS will generally be 
bounded by the two limiting cases of constant 
and growing populations. 

Estimating Genealogical Depths with 
Model-Free Methods 
Uncertainty concerning the mutation rate 
and process presents a serious limitation for 
model-free approaches. In the case of mi- 
crosatellites, deviations from the SMM (39, 
40) could result in substantial biases that 
are hard to detect in model-free analyses. 
Important possible deviations from the 
SMM include variable step size (u2 > 1) 

that has been observed at low frequency 
(46), directional bias in the mutation pro- 
cess ( 4 7 ) , length dependence in the muta- 
tion rate (48) and step size, and a depen- 
dence on the size of the repeated motif. 
Finally, it is clear that microsatellite allele 
length is constrained, in part as a result of the 
mutation process (49, 50), and this will influ- 
ence the dynamic of distance measures. 

Length-dependent mutation rates. A gen- 
eral mutation parameter may thus be written 
in the form 

(39), where ~ ( 1 )  and u2(1) are the mutation 
rate and variance of step size, respectively. In 
the simplest instance of a length-dependent 
mutation process, the functional form will be 
linear; quite generally this form also de- 
scribes more complicated functional depen- 
dencies to first order: 

To describe length dependence, we use the 
results of (48) for a set of 10 microsatellite 
loci in a large sample of Y chromosomes. 
This mutation rate model was implemented in 
the coalescent simulations as follows. In the 
generation of the simulated data sets we use 
p. = 0.0028 but assume that this corre-
sponds to the average allele length (i.e., 1 = 
16.96) in (46), and we adjust the mutation 
rate after each mutation event according to 
the new repeat length. When we estimate 
the genealogical depth of a haplogroup 
from Eq. 4, we calculate a length-adjusted 
mutation rate for each locus from Eq. 6 by 
using the average repeat size at that locus in 
the haplogroup. This procedure yields reli- 
able estimates for TMRCA (Fig. 2B). If, 
however, the mutation rate is assumed to be 
constant, estimates for TMRCA may sig- 
nificantly deviate from their true values. As 
expected, accuracy again increases with the 
number of loci. 

Y-chromosome genealogies. If the muta- 
tion rate depends on repeat count, this can 
have quite profound consequences for esti- 
mates of genealogical depth (Table 1). This is 
also a problem for model-based approaches 
where the initial choice of an underlying 
population and mutation model may bias the 
results. For example, deviations from con-
stant p. could be misinterpreted as resulting 
from a different genealogical depth. In Table 
1, we compare estimates of TMRCA for 
chromosomes sampled from several conti- 
nents and belonging to four haplogroups (48); 
we find that a length-dependent mutation rate 
can have important consequences for esti- 
mates of genealogical depths. For example, 
we find that for hglO, including length de- 
pendence yields estimates that are more than 
twice as old as the estimate with constant p,. 
Differences are even greater for individual 

loci. The rate for locus DYS388 in hg9 is I 
predicted to be more than 3.5 times the mu- 
tation rate at the same locus in hg4. Because 
Kayser et al. (46) observed only a single 
mutation event for simple (i.e., perfect re-
peats) microsatellite loci, our calculations 
should be understood as illustrative only. To 
account for length dependence properly, it is 
furthermore important (i) to have more con- 
clusive data to estimate p. for simple loci, and 
(ii) to use locus-specific length dependencies. 
It is therefore important to further elucidate 
the microsatellite mutation process and pa- 
rameterize the SMM such that Y-chromo- 
some data can be interpreted more reliably. 
As the differences can be expected to be 
significant if few loci are included, length 
dependence presents another reason, in addi- 
ton to inherent stochasticity, to be extremely 
cautious regarding time estimates based on 
only a few loci. For these reasons, we con- 
sider estimates made on fewer than 10 to 20 
loci to be unreliable; as far as we know, all 
estimates of Y-chromosome genealogical 
depth published to date fit into this category. 

Many questions of interest in human evo- 
lution require secure genealogical data for the 
Y chromosome and other genetic regions. For 
example, appropriate comparison of male and 
female patterns of movement requires com- 
parison of Y chromosome and mtDNA lin- 
eages of comparable time depths, whereas 
many questions in anthropology require as-
sessment of the spatial distribution of lineag- 
es of known origin (1, 2, 6, 24). For this 
reason, most research studies in human evo- 
lution include estimates of genealogical 
depth. Currently even the more elaborate 
population models, however, are clearly in- 
sufficient descriptions of human demogra- 
phy; this limits the range of questions that can 
be asked and creates unknown biases. The 
relative merits of model-based and model-free 
methods will obviously depend on the quality 

Table 1. Ages (in generations) of the most recent 
common ancestors of alleles belonging to haplo- 
groups hg3 [Var(l) = 0.2561, hg4 [Var(l) = 0.3161, 
hg9 [Var(l) = 0.4671, and hglO [Var(l) = 0.2771. 
Ages (in generations) were determined from Eqs. 3 
and 4, assuming constant (column 1) and length- 
dependent (column 2) mutation rates. Also shown 
are estimates obtained excluding the six simple 
loci DYS19, DYS388, DYS392, DYS393, DYS425, 
and DYS426 without (column 3) and with (column 
4) consideration of length dependence. Including 
length dependence can change estimates for 
TMRCA by more than a factor of 2, although for 
individual loci estimates can differ by much more. 

Haplogroup 1 2 3 4 
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of the match between the model used and the 
population under study, and it is difficult to 
provide generic guidelines. In some cases-for 
example, populations distributed across island 
systems and clearly not at equilibrium-the 
mismatch between model assumptions and 
reality is so great that it is hard to see the 
advantage of using the currently available 
model-based methods. Even in cases of less 
obvious violation of model assumptions, we 
would advocate the continued use of model- 
free (51) methods as a complement and test 
of the model-based (31-33) approaches. 
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Genetic Clues to Dispersal in Human 

Populations: Retracing the-past from the Present 


Rebecca 1. Cann 

Ongoing debate about proper interpretation of DNA sequence polymor- 
phisms and their ability t o  reconstruct human population history illus- 
trates a important change in perspective that we have achieved in the past 
20 years of population genetics. To what extent does the history of a locus 
represent the history of a population? Tools originally developed for 
molecular systematics, where genetic lineages have been separated by 
speciation events, are routinely applied t o  the analysis of variation within 
our species, wi th conflicting results. Because of automated technologies 
and linkage analysis, we are poised t o  harvest a wealth of information 
about our past, i f  we are successful in moving beyond a current polariza- 
t ion regarding models of human evolution. Rather than just suggesting 
that true resolution wil l  only come by considering fossil or archaeological 
evidence, the realistic and appropriate application of genetic models for 
analysis of population structure is also necessary. Three examples from 
different dispersal events are highlighted here. 

Studies of single-nucleotide polymorphisms 
(SNPs), as molecular genetic markers for 
mapping common disease genes (1, 2), have 
reconfirmed the importance of human popu- 
lation structure. It was originally estimated 
that about one difference per every 1 kb 
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would exist in the human genome, and two 
broad surveys (3, 4) now suggest that for 
protein coding regions, this number is likely 
to be one difference per every 1200 base 
pairs. Some of these differences will be com- 
mon around the world, but others will only be 
associated with local populations. Are there 
general predictions or principles to assist our 

of what is likely to be mere 
noise and what is genetically We 
know that the history of a gene is easier to 

determine than an accurate history of a pop- 
ulation, because a particular pattern of varia- 
tion can have multiple evolutionary causes. 

In the SNP studies, Ahcans as a group 
show greater diversity of alleles and more 
unique alleles once ascertainment biases had 
been controlled for, consistent with the antiqui- 
ty of this gene pool among humans. Compari- 
sons with nonhuman primates also demonstrate 
that it is possible to use the same DNA chip 
technology to identify the ancestral state of 
many common alleles (5), so that frequency of 
a particular polymorphism can be used to infer 
the time that the allele arose, as predicted by 
theory (6) . Yet, a recent study of DNA from 
Australian skeletal populations has again ques- 
tioned the African origin of our species and 
suggested that we are still confused about pop- 
ulation dynamics, bottlenecks, and migrations 
(7 ) .  

Allele frequencies, first generated from 
classical markers and more recently with mi- 
crosatellites, had been the common currency 
used to compare population isolates because 
they generated data to estimate gene flow and 
population subdivision. In order to escape the 
biases of natural selection that might drive 
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