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specifically inhibit DNA repair in these resis- 
tant cells by targeting the key enzymes. Ge- 
netic polymorphisms in relevant repair genes 
will be identified and efforts made to corre- 
late them with effects on activity of the re- 
spective proteins, with response to particular 
therapies and with clinical outcomes. Al-
though a number of polymorphisms in DNA 
repair genes are being reported, there is pres- 
ently little functional information on the con- 
sequences of the attendant amino acid chang- 
es. It will be important to find out which 
polymorphisms actually affect protein func- 
tion and then concentrate on these in epide- 
miological and clinical studies. For example, 
homozygosity for a particular polymorphism 
in the DNA ligase subunit XRCCl is associ- 
ated with higher sister chromatid exchange 
frequencies in smokers, suggesting an asso- 
ciation of this allele with a higher risk for 
tobacco- and age-related DNA damage (19). 
Larger studies and comparison with other 
polymorphisms having known biochemical 
effects will be needed to further validate and 
extend these findings. 

Furthermore, with the use of gene and 
protein array techniques, it should be possible 
to compare expression profiles of DNA repair 
genes in normal and tumor cells-informa- 
tion that could eventually lead to individually 
tailored therapies with chemicals and radia- 
tion. For example, tumors with low levels of 
NER should be more susceptible to treatment 
with cisplatin (20). In experimental systems, 
MMR-deficient cells are highly tolerant to 
alkylating chemotherapeutic drugs. MMR-
defective tumors such as those found in he- 
reditary nonpolyposis colon cancer may be 
resistant to treatment with such agents (21). 

Some variation in DNA repair gene ex- 
pression is epigenetic in origin and has been 
found for instance with MGMT and MSH6 
(22). The MGMT gene promoter is often 
methylated in gliomas, resulting in sup-
pressed expression that can be associated 
with an improved response after tumor treat- 
ment with an alkylating agent (23). The com- 
plete human genome sequence now allows 
the definition of promoter regions so that the 
DNA methylation status of relevant CpG is- 
lands can be investigated readily. Finally, 
DNA repair, especially repair of oxidative 
damage, has often been suggested as a rele- 
vant factor in counteracting aging. An exam- 
ination of polymorphisms and gene expres- 
sion levels in human DNA repair genes and a 
comparison with the equivalent genes in 
shorter lived mammalian species should help 
determine the importance of DNA repair in 
normal aging processes. 
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The chromosomal position of human genes is rapidly being established. We 
integrated these mapping data with genome-wide messenger RNA expression 
profiles as provided by SAGE (serial analysis of gene expression). Over 2.45 
million SAGE transcript tags, including 160,000tags of neuroblastomas, are 
presently known for 12 tissue types. We developed algorithms to assign these 
tags to UniGene clusters and their chromosomal position. The resulting Human 
Transcriptome Map generates gene expression profiles for any chromosomal 
region in 12 normal and pathologic tissue types. The map reveals a clustering 
of highly expressed genes to specific chromosomal regions. It provides a tool 
to search for genes that are overexpressed or silenced in cancer. 

GeneMap'99 (I) gives the chromosomal use of the SAGE technology and databases. 
position of 45,049 human expressed se- SAGE can quantitatively identify all tran- 
quence tags (ESTs) and genes belonging to scripts expressed in a tissue or cell line (2). 
24,106 UniGene clusters. To obtain an ex- It is based on the extraction of a 10-base 
pression profile of these genes, we made pair (bp) tag from a fixed position in each 

transcript and the sequencing of thousands 
of these tags. Software programs and data- 
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check of 156 tags extracted from 30 Uni- 24,106 UniGene clusters mapped on Gene- Web site, see (4)] uses these tag assignments 
Gene clusters showed that wrong tags mainly Map799. Manual analysis of 287 tags extract- to relate 2.3 1 million tags in public SAGE 
stemmed from sequence errors in ESTs and ed from 86 UniGene clusters from intervals libraries (NCBI SAGEmap database) (5) 
from errors in their 5' and 3' orientations. We of chromosomes 1 and 22 showed an error and 160,000 tags in our neuroblastoma 
developed algorithms to select 3'-end clones rate of 6.2% in our electronic tag identifi- SAGE libraries to the UniGene clusters 
of 713,489 ESTs assigned to UniGene clus- cation algorithms. To check for errors in mapped in GeneMap'99. The Human Tran- 
ters and identified their tags. Sequence com- UniGene clustering, we verified tags on the scriptome Map shows expression profiles 
parison algorithms discarded tags caused by available sequenced PI-derived artificial for any chromosomal region in 12 tissue 
sequence errors while preserving tags from chromosomes (PACs) of the mapped mark- types. SAGE libraries of a specific tissue 
alternative transcripts or single nucleotide ers and annotated them accordingly [see were combined into tissue-specific libraries 
polymorphisms [see supplementary infor- legend to Fig. 2 and supplementary infor- (e.g., normal colon). We included tissues 
mation for AMCtagmap details (3)]. We mation (3)]. for which 100,000 or more tags were avail- 
identified reliable tags for 18,954 of the The Human Transcriptome Map [for able, as most transcripts in a tissue are 

represented in a library of this size (6). 
Fig. 1. Whole chromosome view Five libraries represent normal tissues (co- 
of expression levels of the 1208 lon epithelium, brain, mammary gland, 
UniGene clusters mapped to  ovary, and prostate), and seven libraries 
chromosome 11 on the GB4 ra- represent tumor tissues (neuroblastoma, 
diation hybrid map of Gene- E ~ P ~ M L.v.l. glioblastoma, medulloblastoma, and carci- Map99. Each unit on the vertical 
axis represents one UniGene nomas of colon, ovary, breast, and pros- 
cluster. UniGene clusters mapped tate). The Human Transcriptome Map has 
by several markers are only I three levels of resolution. The "whole 
shown once, at the position of chromosome view" shows gene expression 
the highest lod score (the loga- per chromosome (Fig. 1). Each horizontal 
rithm of the odds ratio for Link- blue or red bar represents the expression 
age). Only clusters for which we 
could extract a tag with our al- level of a UniGene cluster. UniGene clus- 
gorithms are included. Expres- ters mapped by several markers are shown 
sion is shown for SAGE libraries only once, at the position of the highest 
of 8 out of the 12 available tis- reliability (I). The identity, map position, 
sue types. Expression Levels in and precise expression of the genes are 
the Libraries are normalized per 
100,000 tags. Expression Levels 

shown in the "concise interval view." The 

from 0 to  15 tags are shown by highest resolution is given by the "ex- 
horizontal blue bars. Tag fre- tended interval view," where expression 
quencies over 15 are shown by levels are shown for all individual tags of a 
red ban. The blue-only section gene (Fig. 2). 
t o  the right represents a moving The whole chromosome views reveal a 
median with a window size of higher order organization of the genome, as 
39 UniGene clusters generated 
from the expression levels in "all there is a strong clustering of highly ex- 
tissues." Green bars indicate pressed genes. Chromosome 11 has several 
RIDGES. The boxed region shows I large regions of high gene expression, inter- 
the tissue-specific expression of spersed with regions where gene expression 
a cluster of five metalloprotein- is low (Fig. 1). This pattern is observed in all 
ases and two apoptosis inhibi- 
tors in normal breast tissue and 

12 tissues. An application of a moving medi- 

breast cancer tissue. an with a window size of 39 genes to the 
chromosome 1 1 map even more clearly visu- 
alizes the expression differences (Fig. 1, blue 
graph to the right). Most chromosomes show 
these clusters of highly expressed genes, 
which we call RIDGEs (regions of increased 
gene expression) (Fig. 3). A quantitative def- 
inition of RIDGEs is not straightforward, as 
there is a continuum from small to very large 
clusters. We analyzed whether RIDGEs can 
be explained by a random variation in the 
distribution of highly expressed genes among 
the 18,954 genes of the Human Transcrip- 
tome Map. When defined as regions in which 
10 consecutive moving medians have a lower 
limit of four times the genomic median, we 
identify 27 RIDGEs (green bars in Figs. 1 and 
3). The probability of observing this number 
of RIDGEs under a random permutation of 
the order of the 18,954 genes is very low 
[P = lo-''; see supplementary information 
(3)]. In addition, Bayesian statistical model- 
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ing without prior cluster definition showed likely represent a higher order structure in the high gene density. Chromosome 18 is, on 
that a model of nonrandom distribution pro- genome. average, weakly expressed, and only 385 
vided the best fit with the observed cluster- Analysis of RIDGES for physical charac- genes have been mapped to it on Gene- 
ing. These analyses show that FUDGES most teristics suggests that many of them have a Map'99. The equally large chromosome 19 - 

Chromosome 2: 025287 - 0282375 

cR Mnrkw Emim normal BRiin turn Cdon nomml Cdon tumor Neuroblaotoma Unipene Tag 

Fig. 2. Extended interval view of a chromosome 2p region showing 
neuroblastoma-specific overexpression of the neighboring genes N- 
myc (UniGene Hs. 25960) and DDX-1 (UniGene Hs. 78580). A small 
part of the interval D2S287 to  D2S2375 is shown. The Left columns 
show the marker and centiray position as defined on GeneMap199. 
The right side shows the UniGene number, tag sequence, and the 
description of the UniGene cluster. Expression levels in the Libraries 
are normalized per 100,000 tags and shown by colored bars with a 
range from 0 to  15. Numbers give the tag counts per 100,000 tags. 
The tags are annotated by symbols. To identify tags produced by 
hybrid UniGene clusters, we analyzed for each marker of GeneMap'99 
the corresponding PAC sequenced in the Human Genome Project, as 

well as two adjacent PACs. Tags that are present on these PACs are 
from ESTs belonging t o  the mapped marker and are marked by P in  a 
Light green box. Tags not present on these PACs are probably derived 
from a contaminating EST not belonging t o  the mapped marker and 
are marked by P in a red box [see Web site (4)].  This check is not yet 
available for all markers. Tags belonging to  more than one UniGene 
cluster are marked by 213 or >3 in a yellow box. The expression levels 
of tags belonging t o  more than three clusters are not shown and are 
not used in the totals of the concise interval maps and the whole 
chromosome maps. Tags from ESTs of opposite orientation in the 
UniGene cluster are marked with AS in a purple box. 

Fig. 3. Regional expression profiles for 23 human chromosomes show a with one or more consecutive moving medians that have a Lower Limit 
clustering of highly expressed genes in RIDGES. Expression levels are shown of four times the genomic median; 27 of them have a Length of at 
as a moving median with a window size of 39 genes. There are 74 regions least 10 consecutive moving medians (indicated by green bars). 
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consists of a succession of RIDGEs and har- 
bors 937 mapped genes (Fig. 3). Although 
many human genes are still unmapped, the 
difference in gene density of chromosomes 
18 and 19 is supported by CpG island density 
analyses (7). The correlation between 
RIDGEs and gene density is even more sug- 
gestive for chromosomes 3 and 6 (Fig. 4). 
The RIDGE on chromosome 6 corresponds to 
the major histocompatibility complex (MHC) 
region. A correlation between gene expres- 
sion and density of mapped genes is found for 
50 to 60% of the RIDGEs [Web fig. 1 (3)]. 
Typical RIDGEs count 6 to 30 mapped genes 
per centiray, compared to 1 to 2 mapped 
genes per centiray for weakly transcribed re- 
gions. In RIDGEs, average expression levels 
per gene are up to seven times that of the 
genomic average. This suggests that in 
RIDGEs, transcription per unit length of 
DNA is 20 to 200 times that in weakly ex- 
pressed regions. About 40 to 50% of the 
RIDGEs are not gene dense. These RIDGEs 
preferentially map to telomeres, which is re- 
markable in light of the observed telomeric 
silencing in yeast (8, 9). Chromosomes 4, 13, 
18, and 21 show an overall low gene expres- 
sion and are devoid of RIDGEs (Fig. 3). The 
latter three chromosomes are responsible for 
most constitutional trisomies, suggesting that 
the low expression and low gene density 
could limit the lethality of an extra copy of 
them. 

The Human Transcriptome Map pro- 
vides a tool to identify candidate genes that 
are overexpressed or silenced in cancer tis- 
sue. Neuroblastomas frequently show am- 
plification of the distal chromosome 2p 
region, which targets the N-myc oncogene 

(10). Comparison of the whole chromo- 
some views of chromosome 2p shows over- 
expression of two adjacent genes in neuro- 
blastoma SAGE libraries. The extended in- 
terval view identifies these genes as N-myc 
and the often coamplified neighboring gene 
DDX-1 (Fig. 2). Therefore, global position- 
al information of chromosomal defects is 
sufficient to identify candidate oncogenes 
(I I). Also, tumor-specific down-regulation 
can be detected. Examples are a cluster of 
five matrix metalloproteinases on chromo- 
some 11 [348 to 353 centirays (cR)] that are 
down-regulated in breast cancer tissue (Fig. 
1, box); the E-cadherin tumor suppressor 
gene on chromosome 16 (406 cR) that is 
down-regulated in breast cancer tissue, as 
compared to normal breast tissue; and five 
carcinoembryonic antigen-related cell ad- 
hesion molecule genes on chromosome 19 
(238 to 244 cR) that are down-regulated in 
colon carcinoma tissue, as compared to 
normal colon tissue (4). 

Potential error sources in the Human 
Transcriptome Map are clustering errors 
in UniGene and the assignment of wrong 
tags to UniGene clusters. Our algorithms 
assign -6.2% erroneous tags to UniGene 
clusters. The influence of these errors is 
probably attenuated. Assuming a total of 
100,000 genes with 2 tags each, 200,000 
tags would represent all human genes. Be- 
cause there are >1 million variants of a 
10-bp tag sequence, -80% of the errone- 
ously extracted tags will not match tags 
present in SAGE libraries and therefore 
will not influence overall expression pro- 
files. However, individual tags and expres- 
sion levels of UniGene clusters may harbor 

Fig. 4. Comparison of median Expression Genedensity 
gene expression levels and 
gene density for chromo- 
somes 3 and 6. The left dia- Expression Gene-density 
grams of each chromosome 
show the expression levels as 
a moving median with a win- 
dow size of 39 UniGene clus- 
ters. The right diagram of 
each chromosome shows 
gene density. For each Uni- 
Gene cluster, we calculated 
the average distance be- 
tween adjacent clusters in a 
window of 39 adjacent Uni- 
Gene clusters. The inverse of 
this value is shown (inverse 
centirays per gene). GG I- 

Tagslgene cRqlgene Tagslgene cR-'I~ene 

#3 #6 

errors and require experimental confirma- 
tion. To test whether errors in UniGene 
clustering and mapping to GeneMap'99 
may influence our observation of RIDGEs, 
we constructed a sequence-based expres- 
sion map for the annotated chromosome 21 
sequence and for a 4.3-Mb annotated contig 
of the MHC region on chromosome 6 (12, 
13). Also, these maps showed that the 
MHC region is a pronounced RIDGE, 
whereas chromosome 21 is devoid of 
RIDGEs and has an overall weak gene 
expression [see Web fig. 4 for maps (3)]. 
Therefore, the higher order structure of the 
genome observed with the Human Tran- 
scriptome Map will largely be correct. The 
existence of RIDGEs is unanticipated, as a 
comparable SAGE-based transcriptome 
map for yeast showed an even distribution 
over the genome of highly and weakly ex- 
pressed genes (8). Because the Human 
Transcriptome Map identifies different 
types of transcription domains, it can now 
be analyzed as to how they relate to known 
nuclear substructures, such as nuclear 
speckles, PML bodies, and coiled bodies 
(14-16). Definition of the position of tags 
to the fill chromosomal sequences will fur- 
ther increase the resolution of the transcrip- 
tome map. Incorporation of the growing 
number of SAGE libraries from different 
tissues and various developmental stages 
will extend the overview of gene expres- 
sion profiles in the human body. 
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