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TRP-PLIK, a Bifunctional Protein 
with Kinase and Ion Channel 

Activities 
Loren W. Runnels, Lixia Yue, David E. Clapham* 

We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part 
of the long transient receptor potential channel subfamily implicated in control 
of cell division, it is a protein that is both an ion channel and a protein kinase. 
TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when 
expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-
picosiemen, steeply outwardly rectifying conductance. The zinc finger contain- 
ing a-kinase domain was functional. Inactivation of the kinase activity by 
site-directed mutagenesis and the channel's dependence on intracellular aden- 
osine triphosphate (ATP) demonstrated that the channel's kinase activity is 
essential for channel function. 

Phototransduction in Drosophila invokes 
phospholipase C (PLCFmediated activation 
of transient receptor potential (TRF') chan- 
nels, leading to membrane depolarization ( I ,  
2). The mammalian TRF' channel family may 
be divided by sequence similarity into short, 

long, and osm 9-like subfamilies [reviewed 
in (3)]. Receptor-mediated stimulation of 
PLC activates many members of the short 
TRF' channels, and physical or chemical stim- 
uli activate isoforms of the osm 9-like TRP 
channel. Long TRP channels (LTRPC), such 
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as melastatin, MTRI, and TRP-PLIK, are 
distinguished by their long coding sequences. 
Melastatin expression correlates with mela- 
nocytic tumor progression, whereas M-1 is 
associated with Beckwith-Wiedemann syn- 
drome and a predisposition to neoplasias (3). 
The gating mechanisms of the LTRPC group 
are unknown. 

A yeast two-hybrid (Y2H) screen of a rat 
brain library,with the C2 domain-containing 
COOH-terminus of PLC-Pl as bait identified 
a potential interacting partner with similarity 
to Dictyostelium myosin heavy chain kinase 
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B (MHCK B) and eukaryotic elongation fac- 
tor 2 kinase (eEF-2 kinase). Rapid amplifica- 
tion of cDNA ends (RACE) experiments 
based on the rat Y2H clones revealed one 
open reading frame encoding a putative ki- 
nase with 347 amino acids and a predicted 
molecular mass of 39.6 kD (4). A BLAST 
search with the sequence of the Y2H clone 
against the NCBI nonredundant nucleotide 
database revealed that the sequence is part of 
a larger open reading frame within a 7105- 
base pair (bp) transcript (accession number: 
AF149013; ChaK) encoding an 1863-amino 
acid protein with a predicted molecular mass 
of 212.4 kD (Fig. 1A). We cloned the pre- 
dicted larger protein directly by polymerase 
chain reaction (PCR) from mouse brain 
cDNA (5). Comparison of the deduced amino 
acid sequence with those in the nucleotide 
and protein databanks demonstrated substan- 

Fig. 1. Sequence of TRP-PLIK and assessment of expression. (A) The deduced amino acid sequence 
of TRP-PLIK (13). Secondary structure algorithms and Kyte-Doolittle analysis of the amino acid 
sequence predict an integral membrane protein with at least six transrnembrane domains (under- 
lined). The TRP family amino acid motif "EWKFAR" that follows the last predicted transrnembrane 
domain is modified in TRP-PLIK (VWJYQRJ and is underscored by asterisks. The putative kinase 
domain containing a region homologous to MHCK B and eEF-2 kinase is boxed in red. The 
"nucleotide binding" motif (GXGXXG) is boxed and the zinc-finger motif is underlined. Residues 
targeted for mutational analysis are designated by solid black circles. (B) Northern blot analysis of 
TRP-PLIK. (C) Expression of full-length TRP-PLIK-HA was assessed by transient transfection of 
TRP-PLIK-HA (lane 1) or vector (lane 2) into CHO-K1 cells by immunoprecipitation and Western 
blotting. (D) Confocal microscope images of TRP-PLIK-HA expressed in HMI cells. 

tial similarity of ChaK to TRP family mem- 
bers, with greatest similarity to a member of 
the LTRPC group, melastatin. We designated 
the smaller protein PLIK, for "phospholipase 
C interacting kinase," and the larger protein 
TRP-PLIK. The interaction of PLIK with 
PLC-P, was confirmed by coimmunoprecipi- 
tation of expressed proteins in CHO-K1 cells 
and by glutathione S-transferase (GST) pull- 
down purification (6). 

Northern blot analysis of polyadenylated 
RNAs revealed an -8-kb transcript in brain 
and skeletal muscle, with stronger signals in 
kidney, heart, liver, and spleen, consistent 
with the 7105-bp transcript size for TRP- 
PLIK (Fig. 1B) (7). SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) and protein im- 
munoblot analysis of transiently expressed 
TRP-PLIK modified at the COOH-terminus 
to contain the hemagglutinin (HA) epitope 
(TRP-PLIK-HA) revealed a signal migrating 
at -220 kD, in accord with the predicted 
molecular mass of TRP-PLIK (212.4 kD; Fig. 
1C) (8). Consistent with TRP-PLIK being an 
integral membrane protein, TRP-PLIK-HA 
transiently expressed in HM1 cells [human 
embryonic kidney (HEK)-293 cells stably 
transfected with the muscarinic type 1 recep- 
tor] revealed both punctate membrane and 
cytoplasmic staining (Fig. ID) (9). 

TRP-PLIK and PLIK contain a region 
with similarity to the catalytic domains of 
MHCK B and eEF-2 kinase. MHCK B and 
eEF-2 kinase belong to the atypical a-ki- 
nase family (10-12). A Clustal W align- 
ment of the catalytic regions of the three 
proteins revealed that TRP-PLIK contains 
the first and last of the three conserved 
glycine residues within the "GXGXXG" 
nucleotide binding motif that is found in 
many adenosine triphosphate (ATP)-bind- 
ing proteins. Further sequence analysis of 
the proposed kinase domain with the pro- 
gram BLOCKS (www.blocks.ficrc.org) re- 
vealed that residues in TRP-PLIK are sim- 
ilar to the "(RK)(RK)HHCR motif" (13) 
in FYVE zinc fingers (14). One of the 
cysteines within this motif is conserved 
among the three kinases. Mutation of a 
conserved pair of cysteine residues COOH- 
terminal to the GXGXXG sequence (Cys313 
and Cys317 in rat eEF-2K) completely in- 
activated eEF-2K (15). 

We tested whether TRP-PLIK and PLIK 
could encode functional protein kinases and 
probed for possible "dominant-negative" mu- 
tations for functional studies by constructing 
recombinant fusion proteins of the kinase 
domain and two mutant forms attached to the 
COOH-terminus of GST. ATP-mut is the 
kinase domain substitution of aspartate ex- 
changed for the final conserved glycine in the 
putative ATP-binding motif of TRP-PLIK 
( G l ~ l ~ ~ ~ ) .  Zn-mut is the kinase domain sub- 
stitution of two cysteines (CyslSo9 and 
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Cys1*12) by alanine within the FYVE zinc 
finger homology domain from TRP-PLIK 
(Fig. 1'A). GST fusion proteins of the wild- 
type kinase domain (GST-WT) and kinase 
domain mutants (GST-ATP-mut and GST- 
Zn-mut) were expressed in Escherichia coli 
as soluble proteins and purified by glutathi- 
one-agarose chromatography. The isolated 
fusion proteins were used for in vitro kinase 
assays with myelin basic protein (MJ3P) as a 
test substrate (Fig. 2, A and B) (16). The 
incorporation of 32P into MBP catalyzed by 
GST-WT, but not by GST or MBP alone, 
indicated that the kinase domain of TRP- 
PLIK exhibited protein kinase activity. The 
incorporation of 32P into GST-WT itself is 
presumably due to autophosphorylation, a 
common feature of protein kinases (1 7). In- 
deed, Fig. 2C shows that the full-length TRP- 
PLIK was autophosphorylated. The incorpo- 
ration of 32P into MBP catalyzed by GST- 
ATP-mut was estimated by densitometxy to 
be 0.005 of that for GST-WT, supporting the 
identification of "GPANLG" (residues 1791 
to 1796) (13) as the ATP-binding site. No 

191- A+ MBP 

R Cwmsssle stalned SDS-PAGE gel 

kinase activity by GST-Zn-mut could be de- 
tected. Because FYVE zinc fingers are stabi- 
lized by interactions of conserved cysteines 
with Zn2+, the tertiary structure of the en- 
zyme mutant within this region could be de- 
stabilized (18). 

TRP-PLIK was functionally characterized 
by whole-cell and single-channel recordings 
of CHO-K1 cells transfected with TRP-PLIK 
(19). In transfected cells, a large outwardly 
rectifying current was elicited by a voltage 
ramp and voltage steps ranging from -100 to 

+I00 mV, whereas mock-transfected cells 
exhibited only a small linear background cur- 
rent (Fig. 3, A and B). Because the large 
outward current above +50 mV was outside 
the physiologically relevant range, we fo- 
cused on the inward currents (see inset in Fig. 
3A). Mean inward current density was 
15.4 ? 2.6 pNpF at -100 mV (Fig. 3C). 

TRP-PLIK currents were not altered when 
NaCl was substituted by CH3S03Na, indicating 
that C1- does not penneate TRP-PLIK chan- 
nels (6). The relative permeability of cations 

I 4- MBP 

Autoradlogram of SDS-PAGE gel *80 mv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  P 
Y 

I 
Western Blot Autoradiogram 

Fig. 2. Kinase activity of TRP-PLIK (16). (A) 
Coomassie-stained gel after SDS-gel electro- 
phoresis of phosphorylation reactions con- 
taining GST-kinase fusion proteins with or 
without MBP. lane M, molecular mass marker; 
lane 1, 10 pg of GST; lane 2, 500 ng of 
GST-WT; lane 3,500 ng of GST-Zn-mut; lane 
4, 500 ng of GST-ATP-mut; lane 5, 1 pg of 
MBP; lane 6, GST and 1 pg of MBP; lane 7, 
GST-WT and 1 pg of MBP; lane 8, GST-Zn- 
mut and 1 pg of MBP; and lane 9, GST-ATP- 
mut and 1 pg of MBP. (B) Autoradiogram of 
same sample gel. (C) Autophosphorylation of 
immunoprecipitated HA-tagged TRP-PLIK 
upon incubation with [Y-~~P]ATP. 
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Fig. 3. TRP-PLIK currents in transfected CHO-K1 cells. (A) Representative recordings of TRP-PLIK 
currents evoked by a 500-ms voltage ramp ranging from -100 to +I00 mV in TRP-PLlK-transfected 
(a) and mock-transfected CHO-K1 cells (b). Holding potential = 0 mV. Inset shows current traces 
obtained during ramps from -100 to 0 mV performed on the same cells but amplified to provide 
a more detailed view of the inward currents. pA/pF, picoampereslpicofarad. (B) Currents elicited by 
voltage steps ranging from -100 to +I00 mV in a TRP-PLIK-expressing cell show that the current 
steeply rectifies and is time invariant during the duration of the step. (C) Averaged I-V relation of 
the TRP-PLIK current (n = 10). (D) Blockade of TRP-PLIK by 2 mM La3+ (outward currents, upward 
bars; inward currents, downward bars; + SEM; n = 5). (E) Single-channel currents of TRP-PLIK at 
various test potentials obtained in outside-out patches. Dashed lines represent the closed state. (F) 
TRP-PLIK single-channel I-V relation. Single-channel current amplitude was determined by mea- 
suring amplitude histograms at each potential. A linear. regression fit from +40 to + 100 mV (solid 
line; +SEM) yielded a slope conductance of 105 2 8 pS (n = 4). 
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relative to that of Cs+ was 1.1, 0.97, and 0.34 
for K+, Na+, and Ca2+, respectively. TRP- 
PLIK was not blocked by 1 mM BaZ+, 1 mM 
TEA, or 0.2 mM ZnZ+. La3+ (2 mM) blocked 
inward and outward TRP-PLIK currents by 
97% (P < 0.01, n = 5) and 37% (P < 0.05, 
n = 5), respectively. Single-channel currents 
were measured at positive voltages in outside- 
out patches, and their net activity agreed with 
that predicted fiom the whole-cell currents. The 
slope conductance of the single-channel cur- 
rents was 105 5 8 pS (Fig. 3, E and F). 

We tested the effects of mutations that alter 
kinase activity on channel function. Wholecell 
current amplitudes of ATP-mut and Zn-mut 
TRP-PLIK were markedly decreased compared 
with those of the nonmutated TRP-PLIK, sug- 
gesting that kinase activity was required for 
TRP-PLIK channel function (Fig. 4, A and B). 
This was supported by experiments in which 
current amplitudes in cells dialyzed with an 
ATP-containing pipette solution (5 mM ATP, 1 
mM M$+) initially increased, followed by a 
slow decrease over several minutes. Currents in 

cells dialyzed with 0 mM ATP (1 rnM M$+) 
pipette solution were significantly smaller and 
did not vary during recordings (Fig. 4, C and 
Dl. 

TRP-PLIK is a protein that is both an ion 
channel and a kinase. As a channel, it con- 
ducts calcium and monovalent cations to de- 
polarize cells and increase intracellular calci- 
um. As a kinase, it is capable of phosphoryl- 
ating TRP-PLIK and other substrates. The 
kinase activity is necessary for channel func- 
tion, as shown by its dependence on intracel- 
lular ATP and by the kinase mutants. Al- 
though kinases have long been known to 
modulate ion channels (20), TRP-PLIK is 
unusual in that the channel has its own ki- 
nase. The presence of the kinase domain ad- 
jacent to the sixth transmembrane segment 
(S6) supports the hypothesis that it plays an 
important role in channel gating, because S6 
appears to be commonly involved in the gat- 
ing of ion channels (21). We postulate that 
TRP-PLIK is controlled by intracellular ATP 
levels and may be linked to a signal transduc- 

Fig. 4. TRP-PLIK channels are controlled by kinase activity. (A) Representative currents recorded in 
TRP-PLIK-expressing cells (top) and currents elicited by voltage ramps in Zn-mut, ATP-mut, and 
mock (vector)-transfected CHO-K1 cells (bottom). (B) Mean current amplitude (+SEM, n = 8) of 
TRP-PLIK, Zn-mut, ATP-mut, and control (vector). Upward ban, outward current; downward bars, 
inward current. * indicates P <0.01 compared with TRP-PLIK. (C) Representative outward (top) and 
inward TRP-PLIK currents (bottom) recorded at 0, 200, and 800 s after initiation of whole-cell 
dialysis. (D) Time-dependent changes in TRP-PLIK current amplitude in cells dialyzed with either 0 
or 5 mM ATP (1 mM Mg2+) in normal intracellular solution (+SEM, n = 5). 

tion cascade that modulates the channel's 
kinase activity. This member of the LTRPC 
family may link calcium-dependent processes 
in cells, such as cell division and apoptosis, to 
receptor and plasma membrane-associated 
signal transduction events. 
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Role of the ENTH Domain in 
Phosphatidylinositol-

4,5-Bisphosphate Binding and 
Endocytosis 

Toshiki Itoh,' Seizo ~oshiba,' Takanori Kiga~a, ' .~ Akira ~ikuchi? 
Shigeyuki Y~koyama,'.~.~ Tadaomi Takenawal* 

Endocytic proteins such as epsin, AP180, and HiplR (SlaZp) share a conserved 
modular region termed the epsin NH,-terminal homology (ENTH) domain, 
which plays a crucial role in clathrin-mediated endocytosis through an unknown 
target. Here, we demonstrate a strong affinity of the ENTH domain for phos- 
phatidylinositol-4,5-bisphosphate [Ptdlns(4,S)Pz]. With nuclear magnetic res- 
onance analysis of the epsin ENTH domain, we determined that a cleft formed 
with positively charged residues contributed to phosphoinositide binding. Over- 
expression of a mutant, epsin Lys7' -Ala7', with an ENTH domain defective 
in bh~s~hoinositide bindin-g, blocked epidermal growth factor internalization in 
COS-7 cells. Thus, interaction between the ENTH domain and Ptdlns(4,5)Pz is 
essential for endocytosis mediated by clathrin-coated pits. 

ENTH domains are structural modules of 
-140 amino acids found in mammalian epsin 
1 and 2, AP180, and HiplR, as well as in 
their yeast homologs, Entlp through Ent4p, 
yAP180, and Sla2p (1-4). Mammalian epsin 
plays a crucial role in clathrin-mediated en- 
docytosis (2). Yeast Entlp and Ent2p are 
essential for actin function and for endocyto- 
sis. Disruption of both genes in yeast is lethal, 
and the ENTH domain is required to inhibit 
lethality. Almost all temperature-sensitive al- 
leles of the ENTl gene are found within the 
ENTH domain, supporting its importance (3). 
The essential function of the conserved 
ENTH domain from yeast to mammal 
prompted us to identify its downstream tar- 
get. Using an ENTH affinity chromatography 
column, we were not able to detect any pro- 
tein from bovine brain extract bound to the 
evsin ENTH domain. Because clathrin-medi- 
ated endocytosis is mediated by a specific 
interaction between endocytic proteins and 
the lipid bilayer to form invaginated buds and 
coated vesicles (5 ,  6 ) ,  and because many 
biochemical and physiological studies sug- 
gest important roles for phosphoinositides in 
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endocytosis and vesicular trafficking (7-9), 
we examined the possibility that the ENTH 
domain binds to phosphoinositides. 

To determine whether the ENTH domain 
could bind phosphoinositides, we subjected a 
glutathione S-transferase (GST) fusion pro- 
tein of the epsin ENTH domain to liposome 
binding assay. Although epsin ENTH did not 
co-sediment with phosphatidylethanolamine 
(PE)- and phosphatidylcholine (PC)-based 
liposomes, increasing concentrations of 
phosphatidylinositol4,5-bisphosphate [Ptd-
Ins(4,5)P2] in the liposomes resulted in co- 
sed~mentation of the ENTH domain (Fig. 1A). 
Co-sedimentation was not observed in the pres- 
ence of increased concentrations of PtdIns in 
the liposomes, demonstrating a high specificity 
for the interaction with PtdIns(4,5)P2. Co-sedi- 
mentation was clearly observed at 0.2% 
PtdIns(4,5)P2, and the dissociation constant K, 
for the interaction was estimated at 0.37 FM. 
The strong interaction between the ENTH do- 
main and PtdIns(4,5)P2 was confmned by other 
methods, including overlay assays with protein 
probe against phospholipids (Fig. 1B) and lipid 
probe against the ENTH domain blotted onto 
nitrocellulose membrane (Fig. 1C). The speci- 
ficity of the binding was then studied with 
all known mammalian phosphoinositides. 
PtdIns(3,4,5)P3 also showed substantial bind- 
ing, whereas PtdIns, PtdIns3P, PtdIns4P, 
PtdInsSP, PtdIns(3,4)P2, and PtdIns(3,S)P2 
exhibited far lower affinities (Fig. ID). No 
binding was observed of other acidic phos- 
pholipids, such as phosphatidic acid and 
phosphatidylserine (Fig. ID). We also canied 
out liposome binding assays for the AP180 
ENTH domain. AP180 ENTH bound to 
PtdIns(4,S)P2 strongly and also showed a 
lower affinity for PtdIns(3,4,S)P3 (Fig. 1E). 
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