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Recolonizing Carnivores and 

Naive Prev: Conservation 

Lessons from Pleistocene 


Extinctions 
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The current extinction of many of Earth's large terrestrial carnivores has left  
some extant prey species lacking knowledge about contemporary predators, a 
situation roughly parallel t o  that 10,000t o  50,000years ago, when na'ive 
animals first encountered colonizing human hunters. Along present-day car- 
nivore recolonization fronts, brown (also called grizzly) bears killed predator- 
na'ive adult moose at  disproportionately high rates in  Scandinavia, and moose 
mothers who lost juveniles t o  recolonizing wolves in North America's Yellow- 
stone region developed hypersensitivity t o  wolf howls. Although prey that had 
been unfamiliar wi th  dangerous predators for as few as 50 t o  130 years were 
highly vulnerable t o  initial encounters, behavioral adjustments t o  reduce pre- 
dation transpired within a single generation. The fact that a t  least one prey 
species quickly learns t o  be wary of restored carnivores should negate fears 
about localized prey extinction. 

The spectacular post-Pleistocene extinctions 
of many genera of large animals in areas 
ranging from Australia to North America 
have been attributed primarily to human 
overkill as hunters encountered nai've prey- 
the "blitzkrieg hypothesis" (1)-andlor to cli- 
mate change (2). An inadvertent consequence 
of today's extinction of many large carni- 
vores is that prey in otherwise intact areas 
may lose knowledge about current predators 
(3, 4). These extinctions, however, offer op- 

portunities to assess the generality of compo- 
nents of the blitzkrieg hypothesis and to ad- 
dress concerns about the ecological conse- 
quences of carnivore restoration. In Western 
Europe and the United States (outside of 
Alaska), wolves (Canis lupus) and brown 
bears (Ursus arctos) were eliminated within 
100 years from more than 95% of their range. 
The cessation of predation has released mam- 
malian prey from past selection pressures 
(3-5), but the current expansion of large car- 
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nivores into formerly depopulated ecosys- 
tems is bringing them into contact with naive 
prey, a situation roughly similar to some 
post-Pleistocene events. Whereas naive large 
animals first encountered colonizing paleo- 
lithic hunters 10,000 to 50,000 years ago, 
species such as bison, moose, and elk are now 
reexperiencing bears and wolves after they 
had been locally extinct. 

To understand the possible susceptibility 
of extant prey to unfamiliar predators, we 
focus on two predictions: that naive prey (i) 
fail to display appropriate behavior to reduce 
predation and (ii) experience heightened mor- 
tality along colonizing fronts (6). We studied 
a common circumpolar ungulate, the moose 
(Alces alces), focusing on sites (i) with pred- 
ators, (ii) lacking predators, and (iii) with 
recent carnivore recolonization. Two types of 
macrogeographic contrasts were made: one in 
Europe, the other in North America. Three 
Scandinavian sites [(i) Dalarma-Hedmark 
(Sweden-Norway), (ii) Harjedalen (Sweden), 
and (iii) Norrbotten (Sweden)] had predator- 
naive moose that were becoming reexposed 
to bears along colonizing fronts (7, 8). In the 
United States, six sites (four in Alaska and 
two in Wyoming) were studied. The Wyo- 
ming sites included nayve moose in and away 
from the paths of colonizing wolves and griz- 
zly bears in the southern region of the Greater 
Yellowstone Ecosystem. Bears, wolves, and 
moose have overlapped in mainland Alaska 
for about 9000 years (9), and in these and 
other systems, juvenile moose mortality is 
three times greater than when these predators 
are absent (10, 11). 

Predator-naive individuals may be less 
sensitive to cues that signify the presence of 
dangerous carnivores. We examined this idea 
by comparing (i) vigilance, (ii) predator-di-. 
rected aggression, and (iii) abandonment of 
feeding sites by adult female moose during 
and after systematic playback experiments 
with novel and familiar auditory and olfacto- 
ry cues. In Alaska, we used three sites with 
intact carnivore communities (Talkeetna 
Mountains, Denali National Park and Pre- 
serve, and Matanuska Valley) and three pred- 
ator-free systems (Kalgin Island in Alaska's 
Cook Inlet, Grand Teton National Park, and 
adjacent forest lands); in the latter, prey had 
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not experienced grizzly bears or wolves for 
40 to 75 years (12). 

Responses to auditory or olfactory cues 
were conspicuously less among predator- naive 
moose (Figs, 1 and 2). Wolf calls increased 
vigilance by about 250% in predator-experi- 
enced Alaskan populations relative to predator- 
free ones (F,, ,,, = 25.771, P < 0.0001) (13). 
The sound of a control-running water-pro- 
duced no differences (F,,,,o = 0.541, P = 
0.744). Additionally, the reactions of preda- 
tor-experienced moose to raven calls were 
about six times greater than those of moose in 
predator-free zones (F = 44.26; P < 0.0001) 
(Fig. I), presumably because these scaven- 
gers are highly associated with grizzly bears 
and wolves (4, 14). Likewise, the odors of 
wolves and bears generally elicited parallel 
responses (Fig. 2); a striking absence of site 
abandonment occurred in naive moose from 
either Alaska or Wyoming when they were 
exposed to wolf urine (abandonment oc- 

Sites With No Predation 

curred in 0 out of 70 trials; Fig. 3) (15). 
One additional measure-the demeanor 

of moose-also supports the notion that 
individuals from predator-depopulated re- 
gions are more vulnerable to predation. 
Naive moose were one-quarter as likely to 
behave aggressively in response to odor 
cues than were predator-savvy conspecifics 
(1 1 versus 47%, respectively; N = 86 na'ive 
animals and 24 predator-savvy animals; 
x2 = 22.397; P < 0.0001) (Id). The former 
failed to drop their heads, retract their ears, 
and piloerect their nape fur-all patterns 
observed when moose fight off bears or 
wolves (1 7, 18). Because naive moose ap- 
proached, rather than avoided, odors in 
16% of the trials (N = 86 trials), but pred- 
ator-experienced moose never. did (N = 24 
trials, P < 0.0001), we can only presume 
that approaches increase, rather than de- 
crease, the chances of predation. 

These data show clear and repeatable 

Sites With Predation 

Water WOK Coyote Rawn Xger Water Won Coyote Rawn nger 

Playback Playback 

I WTeton USFS w Kalgln I 1 Mat-Su . Talkeetnas H Denall 1 
Fig. 1. Descriptive summary of nontransformed mean (cumulative) moose vigilance per 180-s bout 
during and after experimental playback of sounds. Sounds, sites, and sample sizes per site (followed 
by SEM in parentheses) were as follows. Water: Grand Teton National Park (Tet), 196 (1.1); U.S. 
Forest Service (USFS), 30 (1.5); Kalgin Island (Kal), 12 (1.9); Matanuska Valley (Mat), 28 (1.0); 
Talkeetna Mountains (Tal), 25 (1.4); and Denali National Park (Den), 35 (1.1). Wolf: Tet, 215 (4.3); 
USFS, 30 (4.3); Kal, 12 (8.7); Mat, 27 (4.6); Tal, 24 (5.9); and Den, 31 (5.1). Coyote: Tet, 137 (5.3); 
USFS, 21 (2.9); and Den, 26 (4.7). Raven; Tet, 215 (3.2); USFS, 30 (1.6); Kal, 12 (7.3); Mat, 28 (4.8); 
Tal, 23 (5.4); and Den, 31 (4.9). Tiger: Tet, 187 (4.3); USFS, 20 (6.2); Kal, 12 (6.8); Mat, 22 (5.5); Tal, 
18 (5.5); and Den, 27 (5.0). 

Wyoming 

Alaska-no 

Control Snow Human Potato Grizzly Black Wolf Coyote Tiger 

Fig. 2. Descriptive summary of nontransformed mean and SEM of moose responses to odor trials 
by site. The number of trials with the various substances per site was as follows (numbers appear 
in parentheses in the following order: Alaska-yes, Wyoming, and Alaska-no): control, observational 
only (27,95, 1); snow (24, 78, 1); human urine (18,59, 7); fermented potato (0, 10,O); grizzly bear 
feces (19, 80, 4); black bear feces (6, 31, 6); wolf urine (22, 88, 6); coyote urine (12, 70, 4); tiger 
feces (12, 59, 3). Alaska-yes indicates sites with predators; Alaska-no indicates a 2500-acre 
predator exclosure on Kenai Peninsula. 
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Table 1. Summary of the major effects of colonizing carnivores on predator-experienced and -na'ive moose in Europe and North America. Sample sizes are given 
in parentheses under the "Predation" heading. 

Dependent variable Evidence and comment 

Vigilance 

Site abandonment 
Demeanor 

Anti-predator response [North America: Alaska and Wyoming (USA)] 
Sound and odor playbacks elicit greater responses in predator-experienced (Alaska) than in nai've (Alaska and Wyoming) 

populations 
As above 
Predator-experienced (Alaska) individuals were aggressive t o  and never approached odors, in contrast t o  na'ive ones 

(irrespective of either Alaska or Wyoming origins) 

Predation [Europe (Sweden and Noway) and North America (USA)] 

Moose at core of bear areas Moose at colonizing fronts 

Carcass use (all bears)* 

Carcass use (male bears)? 
Predation successlattempts$ 
Predation: total events8 

2.8% (771) 

4.7% (450) 
0% (15) 
0 (Yellowstone; -30 years) 

5.9% (715) 

7.8% (503) 
37.5% (8) 
10 (Jackson Hole; 5 years) 

Rapid behavioral adjustments associated with predation (North America) 
Vigilance Increased in Teton mothers losing offspring to  wolves relative t o  mothers with offspring surviving or lost t o  other causes 
Site abandonment As above 
Birth locations Mean distance of sites in successive years differs between Alaskan mothers with surviving calves (2.9 km) and 

nonsu~iving calves (4.9 km) (22) 

*One-tailed statistical test: xZ = 8.0195. P < 0.0046 ( Wald test). tone-tailed statistical test: XZ = 4.824, P < 0.028. $One-tailed statistical test: P = 0.032 (Fisher's exact 
test). §From (20) and this study. 

W Wyoming 

20 
W Alaska-no 

Fig. 3. Frequency o f  local site abandonment by 
female moose after odor deposition. The num- 
ber of trials (N) is as indicated. Alaska-yes data 
are from Denali and Talkeetnas; Wyoming data 
are from Grand Teton National Park. Pairwise 
Alaska-Wyoming contrasts (excluding the 
Kenai site) are as follows: wolf (P = 0.016), 
wolf and coyote combined (P = 0.003), grizzly 
bear (P =0 .065), grizzly and black bear com- 
bined (P = 0.005), and tiger (P = 0.553). 

differences in behavior associated with 
predators but do not indicate whether prey 
lacking knowledge of either novel or recol- 
onizing predators experience heightened 
mortality. We examined this possibility us- 
ing moose in two discrete systems with 
recolonizing (i) Scandinavian brown bears 
and (ii) Yellowstone wolves and bears. In 
the Dalarna-Hedrnark area, bears were 
functionally extinct by 1897. To evaluate 
the efficiency of bear predation on naive 
and experienced moose, we used spatial 
contrasts, predicting a greater proportion of 
kills along bear colonizing fronts than in 

the center of their range. Bear colonizing 
fronts typically involve males at low den- 
sities, with females more centrally concen- 
trated at higher densities (7, 8). 

Our measures reveal that (i) both sexes 
of radio-marked bears fed on adult moose 
carcasses along dispersal fronts at more 
than twice the rate than away from them; 
(ii) male bears alone did so about two-thirds 
more often along the front than in the center 
(Table 1); and (iii), most prominent, preda- 
tion was more successful along the periphery 
than at the center (38 versus 0%; Table 1) 
(19), a pattern that was also repeated in North 
America. In Yellowstone National Park, 
where grizzly bears and moose have occurred 
sympatrically since at least the 1880s, preda- 
tion on moose was not detected between 1959 
and 1992 (20). However, along the current 
recolonization front in Jackson Hole, at least 
10 adult moose were killed between 1996 and 
2000. Our findings (Table 1) indicate that 
nayve individuals are (i) conspicuously lack- 
ing in astuteness and (ii) experiencing a 
blitzkrieg. 

If predation has the capacity to be both 
intense and swift, then how do naive prey 
avoid extinction, either now or post-Pleis- 
tocene? One survival model posits the rapid 
development of predator recognition 
through individual experience. Predator-na- 
'ive mothers whose calves were killed by 
wolves colonizing Jackson Hole elevated 
their post-playback vigilance to wolf calls 
by about 500%, and the consequent latency 
to resumption of feeding increased from a 
mean of less than 30 s (in years before 
predation) to more than 6 min after (F,, 

89 = 32.516, P < 0.0001); additionally, a 
fourfold increase in site abandonment ac- 
companied' these feeding shifts (x2 = 
5.83 1, P < 0.016) (21). That such dramatic 
changes were caused by wolf predation per 
se and not by other factors is supported by 
two comparative analyses: (i) Mothers 
whose calves died because of starvation or 
collision with vehicles (N = 3) had lower 
vigilance (Z = 29) levels during playbacks 
than did mothers with wolf experience (Z = 
92) (F,, ,, = 24.625, P < 0.0001), and (ii) 
differences between these control mothers 
(who had not lost offspring to wolves) and 
non-wolf-savvy ones (Z = 17) were not 
detectable (P = 0.772). Moreover, mothers 
who lost young to predators at the Tal- 
keetna (Alaska) site relocated their subse- 
quent birth sites more than 1.75 times the 
distance from the prior birth site in the next 
year than did mothers who reared offspring 
successfully (22). 

Our results suggest that offspring loss to 
predators may cause maternal hypersensi- 
tivity, and they illustrate how differences in 
the detection of cues may contribute to 
survival. The sounds of wolves elicited 
much stronger responses, at least after the 
initial phase of the blitzkrieg south of Yel- 
lowstone Park, than did other cues, and the 
magnitude of reactions exceeded those of 
predator-experienced Alaskan moose; re- 
sponses to odors or the calls of scavengers 
did not (Fig. 4). Although the lack of pred- 
ator recognition by naYve prey may have 
been but one of several factors that contrib- 
uted to reduced post-Pleistocene population 
viability (6), for the survivors it remains 
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Fig. 4. Summary of comparative mean annual post-playback responses of adult female moose t o  
four cues: olfactory (wolf urine and grizzly bear feces) and auditory (raven calls and wolf howls). 
The predation blitz is shown once only, but post-blitz responses t o  all four cues were possible (the 
differences between females of Teton-South and Teton-North are F = 24.625, P < 0.0001, and are 
reflected by the bold dotted line). Data on Alaskan females are as follows: Olfactory, wolf and 
grizzly (Talkeetnas and Denali); auditory, raven and wolf (Matunsuka, Talkeetnas, and Denali). 

unclear whether the acquisition of anti-
predatory skills is maintained horizontally 
or vertically, or if it is just a transitory 
process (23). 

What is evident is that naive prey have 
A 	 -

the capacity to process information about 
predators swiftly-in the case of these 
moose, in a single generation. Where both 
young and adults are killed rapidly, oppor- 
tunities for learning will be diminished and 
possibilities for local extinction increased. 
In contrast, where young are primary tar- 
gets, learning may be transmitted vertically 
(24, 251, possibly 	 reducing extinction 

thresholds. Whether behavioral mecha-
nisms some 12,000 years ago 10.000 to -
retarded or facilitated prey viability as hu- 
man hunters advanced remains uncertain. 
Nevertheless, the evidence involving recol- 
onizing brown bears and wolves and moose 
is partially consistent with a 
model but tempered by rapid adaptive 
learning (Fig, 4' and Table i).If 
change was for the Quater-
nary extinctions (21, then perhaps species 
that failed to survive post-Pleistocene hunt- 
ers were simply not quick learners. 

Because large native carnivores contin- 
ue to be reintroduced to parts of Africa, 
E ~ and ~~~h ~ (26, 27), ~ our,~ Amerida ~ 

findings have In 
extant prey, rapid learning may prevent a 

complete blitzkrieg, which is something to 
be welcomed not only by contemporary 
human hunters but by those of us who favor 
fewer extinctions. 
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