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of colipase and angiogenin-3 mRNAs in 
these ex-germ-free mice were comparable to 
those of age-matched mice conventionally 
raised since birth (Fig. 2). In contrast, the 
response of sprr2a to colonization depended 
on the colonizing species: B. infantis and E. 
coli produced only small increases (Fig. 2). 
Mdrla and glutathione S-transferase also ex- 
hibited species-specific responses. Bacte-
roides thetaiotaomicron suppressed and E. 
coli and B. infantis stimulated expression of 
both genes, whereas the multicomponent ile- 
allcecal flora produced no significant (i.e., 
>twofold) change in levels of either mRNA 
compared with germ-free controls. The dif- 
fering MdrlaIGST responses suggest that 
variations in xenobiotic metabolism between 
individuals may arise, in part, from differenc- 
es in their resident gut flora. 

The only B. thetaiotaomicron genes current- 
ly known to link changes in bacterial metabo- 
lism with host responses are those involved in 
fucose utilization (3). Transposon-mediated 
mutagenesis of fuel (encoding fucose isomer- 
ase) blocks the organism's ability to use fucose 
as a carbon source and to signal fucosylated 
glycan production in the ileal epithelium (3). 
Microarray analysis of the host response to 
colonization revealed no appreciable differenc- 
es between isogenic mutant and wild-type 
strains. This similarity extends to all genes in 
Table 1. Future identification of microbial fac- 
tors that interlink microbial and host physiology 
will require characterization of changes in B. 
thetaiotaonzicrongene expression as a function 
of colonization. 

In summaw, the studies described above 
provide a broad-based in vivo characteriza- 
tion of transcriptional responses to coloniza- 
tion with a prototypic gut commensal. Our 
results reveal that commensals are able to 
modulate expression of host genes that par- 
ticipate in diverse and fundamental physio- 
logical functions. The species selectivity of 
some of the colonization-associated changes 
in gene expression emphasizes how our phys- 
iology can be affected by changes in the 
composition of our indigenous microflora. 
The fusion of germ-free technology, func- 
tional genomics, and LCMiqRT-PCR makes 
it possible to use in vivo systems to quantify 
the impact of a microbial population on host 
cell gene expression. 
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Human immunodeficiency virus type-I (HIV-1) membrane fusion is promoted 
by the formation of a trimer-of-hairpins structure that brings the amino- and 
carboxyl-terminal regions of the gp41 envelope glycoprotein ectodomain into 
close proximity. Peptides derived from the carboxyl-terminal region (called 
C-peptides) potently inhibit HIV-1 entry by binding t o  the gp41 amino-terminal 
region. To test the converse of this inhibitory strategy, we designed a small 
protein, denoted 5-Helix, that binds the C-peptide region of gp41. The 5-Helix 
protein displays potent (nanomolar) inhibitory activity against diverse HIV-1 
variants and may serve as the basis for a new class of antiviral agents. The 
inhibitory activity of 5-Helix also suggests a strategy for generating an HIV-1 
neutralizing antibody response that targets the carboxyl-terminal region of the 
gp41 ectodomain. 

Infection by HIV-1, the virus that causes 
AIDS, requires fusion of the viral and cellular 
membranes (1-3). This membrane-fusion 
process is mediated by the viral envelope 
glycoprotein complex (gp120igp41) and re- - .  
ceptors on the target cell: ~ i n d i n g  of gpl20l 
gp41 to cell-surface receptors (CD4 and a 
coreceptor, such as CCR5 or CXCR4) trig- 

gers a series of conformational changes in the 
gp120igp41 oligomer that ultimately lead to 
formation of a trimer-of-hairpins structure in 
gp41 (Fig. 1A). 

The trimer-of-hairpins is a common struc- 
tural element involved in the fusion process 
of many enveloped viruses, suggesting a crit- 
ical role for this motif in promoting mem-
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brane fusion (3-5). In HIV-1 gp41, the core 
of the trimer-of-hairpins is a bundle of six 
a-helices (Fig. 1B): three a-helices (formed 
by the COOH-terminal regions of three gp41 
ectodomains) pack in an antiparallel manner 
against a central, three-stranded coiled coil 
(formed by the NH2-terminal regions of the 
gp41 molecules) ( 6 9 ) .  The fusion peptide 
region, which inserts into the cellular mem-
brane, is located at the extreme NH2-terminus 
of gp41, and the COOH-terminal region is 
adjacent to the transmembrane helix an-
chored in the viral membrane. Thus, the tri-
mer-of-hairpins motif brings the two mem-
branes together (Fig. 1A). 

Agents that interfere with formation of the 
gp41 trimer-of-hairpins structure can inhibit 
HIV-1 infection. Peptides derived from the 
COOH-terminal region of the gp41 ectodo-
main, referred to as C-peptides (correspond-
ing to the outer helices of the six-helix bun-
dle), are effective inhibitors of HIV-1 infec-
tion (10-12). Studies from several groups 
support a mechanism of dominant-negative 
inhibition in which C-peptides bind to a tran-
sient gp41 species known as the prehairpin 
intermediate (Fig. 1A) (1, 6, 12-15). In this 
prehairpin intermediate, the gp41 fusion pep-
tide is embedded in the target-cell membrane, 
exposing the NH2-terminal three-stranded 
coiled coil [compare (16)l. Binding of C-
peptides to the NH,-terminal region of the 
prehairpin structure prevents formation of the 
gp41 trimer-of-hairpins, ultimately leading to 
irreversible loss of membrane-fusion activity. 
C-peptides potently inhibit HIV-1 entry, with 
a mean inhibitory concentration (IC,,) as low 
as 1 nM in vitro (11, 12). One such C-peptide 
is in clinical trials and shows antiviral activity 
in humans (2, 17). More recently, efforts to 
target a prominent pocket on the surface of 
the NH2-terminal coiled coil of the prehairpin 
intermediate have led to the discovery of 
small, cyclic D-peptides that inhibit HIV-1 
infection, thereby validating the pocket as a 
potential target for development of small, 
orally bioavailable HIV-1 entry inhibitors 
(18). 

The importance of trimer-of-hairpins for-
mation for HIV-1 entry leads to the hypoth-
esis that the COOH-terminal region on gp41 
might also serve as a target for potential 
membrane-fusion inhibitors (Fig. 1A). If the 
COOH-terminal region is accessible (at least 
transiently) before formation of the trimer-of-
hairpins, then agents that bind to this region 
of gp41 may prevent fusion. Consistent with 
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this notion (6), peptides derived from the 
gp41 NH2-terminal region (referred to as N-
peptides) are modest inhibitors of HlV-1 
membrane fusion (micromolar IC,,) (6, 19). 
The inhibitory mechanism of N-peptides, 
however, has not been ascertained, in part 
because these peptides have a strong tenden-
cy to aggregate. Indeed, a plausible alterna-
tive mechanism of action for the N-peptides 
is that they intercalate into the gp41 NH2-
terminal coiled coil, thereby disrupting the 
trimeric interface (19, 20). 

To directly test the hypothesis that the 
C-peptide region of gp41 is a potential target 
for the inhibition of HIV-1 entry, we de-
signed a protein that binds tightly and specif-
ically to this site. The design takes advantage 
of the binding properties of the N-peptide 
coiled coil while minimizing the tendency of 
the N-peptides to aggregate. In this designed 
protein, denoted 5-Helix, five of the six heli-
ces that make up the core of the gp41 trimer-
of-hairpins structure are connected with short 
peptide linkers (Fig. 1C) (21). The 5-Helix 
protein lacks a third C-peptide helix, and this 
vacancy is expected to create a high-affinity 

Native 

cell membrane 

Prehairpin 
Intermediate -

co-receptor
Q ~ 1 2 0- I 

binding site for the COOH-terminal region of 
gp41. 

Under physiological conditions, 5-Helix 
is well folded, soluble, and extremely stable, 
with an a-helical content in close agreement 
with the value predicted from the design (Fig. 
2, A and B). In affinity-interaction experi-
ments, 5-Helix interacts strongly and specif-
ically with epitope-tagged C-peptides (Fig. 
2C). Moreover, this interaction induces a he-
lical conformation in the bound C-peptide, as 
judged by the difference in circular dichroism 
(CD) before and after mixing (Fig. 2D). 
These properties are consistent with the in-
tended design of 5-Helix. 

The 5-Helix protein potently inhibits 
HIV-1 membrane fusion (nanomolar IC,,), 
as measured by viral infectivity and cell-cell 
fusion assays (Fig. 3, A and B). In contrast, a 
control protein, denoted 6-Helix, in which the 
C-peptide binding site is occupied by an at-
tached C-peptide (i.e., all six helices that 
constitute the gp41 trimer-of-hairpins have 
been linked into a single polypeptide) (21, 
22), does not have appreciable inhibitory ac-
tivity (Fig. 3A). Likewise, a 5-Helix variant, 

Trimer-
of-Hairpins1 
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gP41 -h
'11 

viral membrane \
II Target of C-peptides I 

Postfusion 

'. 
[ PossibleTarget? I 

L N - ~ O - CLinker 

Gpeptide 
Binding Site 
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Fig. 1. Targeting HIV-1 membrane fusion. (A) A schematic of HIV-1 membrane fusion depicting 
events that promote formation of the gp41 trimer-of-hairpins [adapted from (I)]. The NH,-
terminal fusion peptide of gp41 (red), inaccessible in the native state, inserts into target cell 
membranes following gp120 interaction with CD4 and coreceptors. Formation of the prehairpin 
intermediate exposes the NH,-terminal coiled coil (gray), the target of C-peptide inhibition. This 
transient structure collapses into the trimer-of-hairpins state that brings the membranes into close 
apposition for fusion. (B) Lateral (left) and axial (right) views of a ribbon diagram representingthe 
core of the gp41 trimer-of-hairpins. The ribbon diagram is derived from the crystal structure of a 
six-helix bundle formed by N36 (N-peptide, gray) and C34 (C-peptide, blue) (7). (C) A schematic 
model of the designed protein 5-Helix. Three N-peptide segments (N40, gray) and two C-peptide 
segments (C38, blue) are alternately linked (N-C-N-C-N) using short ClyISer peptide sequences 
(red loops) (27). The sequences of each segment in single-letter amino acid code are: N40, 
QLLSCIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARI~ C38, HTTWMEWDREINNYTSLIHSLIEESQ-
NQQEKNEQELLE; N-to-C linker, CCSCC; and C-to-N linker, CSSCC. 
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denoted 5-Helix(D4), in which the C-peptide 
binding site is disrupted by mutation of four 
interface residues (V549, L556, 4563, and 
V570) to Asp (23), does not block membrane 
fusion even at 1 p,M (Fig. 3A). We conclude 
that C-peptide binding is the key determinant 
of antiviral activity in 5-Helix. 

The inhibitory activities of 5-Helix and 
C-peptides are expected to be antagonistic: 
when 5-Helix binds C-peptide, the amino 
acid residues thought to be responsible for the 
antiviral activities of each inhibitor are buried 
in the binding interface. Indeed, mixtures of 
5-Helix and C34 [a well-characterized and 
potent C-peptide inhibitor with an IC,, - 1 
nM (12)] display a dose-dependent antago-
nistic effect (Fig. 3B). In the presence of 
5-Helix, high-potency inhibition by C34 is 
only observed when the peptide is in stoichi-
ometric excess (Fig. 3B). 

The 5-Helix protein inhibits infection by 
viruses pseudotyped with a variety of HIV-I 
envelope proteins (from clades A, B, and D) 
with similar potency (Fig. 3C). This broad-
spectrum inhibition likely reflects the highly 
conserved interface between the NH,- and 
COOH-terminal regions within the gp41 tri-
mer-of-hairpins structure (Fig. 4). The resi-

dues in the C-peptide region of gp41 that are 
expected to make contact with 5-Helix are 
highly conserved in HIV-I, HIV-2, and sim-
ian immunodeficiency virus (SIV) (Fig. 4). 

As a potent, broad-spectrum inhibitor of 
viral entry, 5-Helix may serve as the basis for 
development of a new class of therapeutic 
agents against HIV-I (24). Moreover, 5-He-
lix offers flexibility in the design of variants 
with better therapeutic characteristics. In 
principle, 5-Helix can be modified extensive-
ly to alter its immunogenic, antigenic, bio-
availability, or inhibitory properties (25). For 
example, the C-peptide binding site might be 
lengthened, shortened, or shifted in the gp41 
sequence in order to optimize inhibitory po-
tency by targeting different regions of the 
gp41 ectodomain. 

It would be desirable to generate neutral-
izing antibodies that mimic the binding prop-
erties of 5-Helix. Unstructured C-peptide im-
munogens may not elicit broadly neutralizing 
antibodies, because the linear sequence of the 
gp41 C-peptide region is variable among dif-
ferent HIV-1 strains. The potent and broad-
spectrum inhibitory properties of 5-Helix 
suggest that an HIV-I neutralizing antibody 
response might be generated using C-peptide 
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Fig. 2. Properties of 5-Helix (47). (A) CD spectrum of 5-Helix (10 p,M) at 25OC. The spectrum 
indicates that the 5-Helix protein adopts >95% of the helical content expected from the design. 
(B) Thermal denaturation of 5-Helix monitored by ellipticity at 222 nm in TBS (filled squares) and 
in 3.7 M CuHCVTBS (open circles). The denaturation observed in the CuHCl solution is >90% 
reversible. (C) Nickel-NTA precipitation of 5-Helix with a His-tagged C-peptide. Untagged 5-Helix 
and His-taggedC-peptide [denoted C37-H6 (39)] were mixed before Ni-NTA agarose was added in 
order to  precipitate complexes containing C37-H6 (lanes 1 and 5; lanes numbered from left to  
right). Addition of excess untagged C-peptide (C34) shifts the 5-Helix molecules from the bound 
to  the unbound fraction (lanes 2 and 6). (D) CD spectra of 5-Helix and C37-H6 before (filled 
squares) and after (open circles) mixing in a mixing cuvette (47). The increase in ellipticity at 222 
nm upon mixing indicates an interaction between the two species that increases the total helical 
content (correspondingto  an additional 28 helical residues per associated C-peptide). 

analogs constrained in a helical conformation 
(i.e., as in the C-peptide region when it binds 
to 5-Helix). 

Interestingly, the epitope for 2F5, a hu-
man monoclonal antibody directed against 
gp41 with broad neutralizing activity, is 
located immediately COOH-terminal to the 
C-peptide region targeted by 5-Helix (26-
28). It is unknown if 2F5 inhibits infection 
by interfering with trimer-of-hairpins for-
mation. The conformation of the 2F5-

1 10 100 1000 

[Protein], nM 

Fig. 3. Inhibition of HIV-1 envelope-mediated 
membrane fusion by 5-Helix (42). (A) Titration 
of viral infectivity by 5-Helix (filled squares), 
6-Helix (open triangles), and 5-Helix(D4) [open 
circles (23)]. The data represent the mean 2 
SEM of two or more separate experiments. (B) 
Antagonistic inhibitory activities of 5-Helix and 
C34. The number of syncytia were measured in 
a cell-cell fusion assay performed in the ab-
sence or presence of 5-Helix, C34, or mixtures 
of 5-Helix and C34 at the indicated concentra-
tions. The IC,, values for 5-Helix and C34 in 
this assay are 13 + 3 nM and 0.55 + 0.03 nM 
(72) respectively. Data represent the mean and 
range of mean of duplicate measurements, ex-
cept for the control (mean + SEM of five 
measurements). (C) Shown is 5-Helix inhibition 
of pseudotyped virus containing different 
HIV-1 envelope glycoproteins. The reported 
IC,, values represent the mean + SEM of three 
independent experiments. 

CI 

Isolate 

HXB2 

UG024.2 

JRFL 

RW020.5 

886 2 FEBRUARY ZOO1 VOL 291 SCIENCE www.sciencemag.org 

Clade 

B 

D 

B 

A 

Coreceptor 

CXCR4 

CXCR4 

CCR5 

CCR5 

IC5,, (nM) 

1.9 2 0.7 

1.3 -L 0.2 

5.6 * 0.7 

5.9 i 2.7 



R E P O R T S  

bound epitope has recently been shown to 
exist in a hairpin turn (29) .  Although anti- 
bodies elicited with fragments of gp41 con- 
taining this sequence do not possess signif- 
icant virus-neutralizing activity (30. 31) ,  it 
is possible that constrained analogs (per- 
haps with an adjacent helical C-peptide 
region) will lead to useful immunogens in 
efforts to develop an AIDS vaccine. 

Alternatively, 5-Helix itself is a potential 
vaccine candidate. The possibility of eliciting 
an antibody response against transiently ex- 
posed conformations of proteins involved in 
HIV-1 fusion has been suggested (32).  One 

C-peptide 
Region of 

gp41 

> 90% conserved 
' 70-90% ~ 0 n S e ~ e d  

< 70% conserved 

possible well-defined target is the NH,-ter- 
minal coiled coil that is exposed in the pre- 
hairpin intermediate (18). Speculatively, a 
5-Helix-like intermediate may be exposed 
during the fusion process (33)  and, in this 
case, antibodies directed against 5-Helix may 
inhibit viral entry. 

Finally, structural ( 4 )  and computational 
( 5 )  methods predict similar trimer-of-hairpins 
motifs for viruses in diverse families, includ- 
ing orthomyxoviridae, paramyxoviridae, filo- 
viridae, and retroviridae. In some of these 
cases, inhibition of viral entry by peptides 
analogous to the C-peptides of gp41 has been 

Fig. 4. A helical wheel diagram depicting the interaction of 5-Helix with the C-peptide region of 
gp41. The (a) through (g) positions in each helix represent sequential positions in the 4.3 
hydrophobic heptad repeat in each sequence. The (a) and (d) positions in the gp41 C-peptide region 
interact with the exposed (e) and (g) positions on the N40 coiled coil of 5-Helix. Residues are boxed 
according to their degree of conservation as determined from the alignment of 247 sequences from 
HIV-1, HIV-2, and SIV isolates (HIV-1 sequence database, August 2000, Los Alamos National 
Laboratory): black rectangle, >90% identical; gray rectangle, >90% conservative substitution 
(43)]; dotted rectangle, 70 to 90% conserved; no box, <70% conserved. Note the high degree of 
conservation in the (a) and (d) positions of the C-peptide region of gp41, a property markedly 
lacking in other positions [particularly (c) and (g)] of the C-peptide region not directly involved in 
binding 5-Helix. 

demonstrated (34-36). Thus, the 5-Helix de- 
sign approach may offer a widely applicable 
strategy for inhibiting viral infections (37) .  
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viruses were generated from 293T cells cotrans- 
fected with an envelope-deficient HIV-1 genome 
NL43LucR-E [B. K. Chen, K. Saksela, R. Andino, D. 
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