
The method used by Matsumoto et al. 
to synthesize their semiconductor also de- 
serves attention. The authors used a new 
breed of material preparation called combi- 
natorial synthesis, which is becoming in- 
creasingly important for screening the vast 
range of possible compositions and condi- 
tions available to inorganic materials (8). 
In Matsumoto et aL's experiments, intense 
ultraviolet laser light hits selected targets, 
giving rise to ablation of the material (see 
the figure on page 840). The ablated mate- 
rial is deposited on a separate substrate in 
an oxygen atmosphere, resulting in doped 
oxide formation. The use of masks leads to 
a series of thin films with different compo- 
sitions on a single substrate while keeping 
other growth conditions virtually constant. 

Combinatorial synthesis is critically 
important for performing efficient search- 

es for materials with specific properties. 
Promising alternatives such as material de- 
sign based on first-principle calculations 
are being developed and have been applied 
to transition metal-doped zinc oxides (9), 
but the extent to which the method can be 
applied remains to be seen. 

What gives rise to room-temperature 
ferromagnetism in the new material is not 
clear yet. The mean field model for carrier- 
induced ferromagnetism in 111-V and 11-VI 
magnetic semiconductors (10) does not 
seem capable of explaining the observa- 
tions. More investigation is necessary to 
elucidate the underlying mechanism. 

Matsumoto et al.'s discovery of a trans- 
parent semiconductor with room-tempera- 
ture ferromagnetism adds a new dimen- 
sion to the already widespread use of per- 
manent magnets in our everyday life, from 

refigerator magnets to mass storage in in- 
formation technology. Through this trans- 
parent material, we get a glimpse of the 
spintronic devices of the future. 
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contrast. Li et al.'s novel aluminum tetramer 

Aromatic Metal Clusters has or& two negative charges and yet ex- 
hibits one filled n-HOMO because two of 

Dong-Kyun Seo an 

hy certain molecules are more sta- 
ble than others is not always easy to \N understand, not least because na- 

ture's diversity does not permit a unified an- 
swer for all classes of compounds. Among 
the useful concepts is aromaticity, the sim- 
plest and yet most successfd description of 
the particular stability of unsaturated cyclic 
hydrocarbons with 2, 6, 10, ... (4n + 2) eleo 
trons delocalized in x-orbitals perpendicular 
to the ring plane. A similar concept, Wade's 
rules for closed shell deltahedra (I), describes 
delocalized o-bonding among gas-phase and 
solid-state cluster compounds, including 
those of the electron-poor elements Ga, In, 
and Tl(2,3). But stability based on arornatio 
ity has not been confiied unambiguously 
for any molecular moiety other than the hy- 
drocarbons and related compounds (4). 

On page 859 of this issue, Li et al. (5) 
report the most convincing evidence to 
date for aromaticity in an all-metal system. 
The authors have created through laser va- 
porization a series of bimetallic clusters 
consisting of a square planar anion 
face-capped by an M+ cation (M = Li, Na, 
Cu) (see the figure). Photoelectron spec- 
troscopic measurements and ab initio cal- 
culations show that the anions have two 
electrons in the n-bonding highest occu- 
pied molecular orbital (HOMO) on A142-. 
The results have important implications 
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the four lone-pair-like MOs lie higher in en- 
~d John D. Corbett ergy and are empty, whether an M+ ion is at- 

tached or not. The expected instability of 
for related polyanions in the solid state. Ab2- toward the loss of an electron (N2- -+ 

In considering the electronic structures A14 + e3 is eliminated by the substantial 
of clusters without externally bound atoms, coulombic (and covalent) energy, around 
it is customary to fill lone-pair molecular 200 kcal/mol, that is gained upon capping 
orbitals (MOs--orbitals delocalized over the square with M+ to form A&M+ (6). This 
three or more atoms), which are regarded as is reminiscent of the importance of cation- 
nonbonding, with two electrons. This is also aromatic ring interactions in organic and bi- 
consistent with the electronic structure ological systems (7). 
schemes for hydrogen-terminated carbon or Will this n-bonding be preserved in an 
boron clusters. It is therefore tempting to as- equivalent Ad2- unit when the tetramer is 
surne that an aromatic Al, cluster should surrounded by cations in a solid? Probably 
have six negative' charges and should be iso- not, for the following reasons. First, the 
electronic with the analogous C4H42+. In surrounding cations will probably stabilize 

empty lone-pair-like orbitals through 
Nonmetallic ~~ electrostatic interactions and polarization, 
elements eleme* such that these too will need to be filled 

by electrons. Rather than M2A14, the stable 
species may then be M6A14, which may 

aromatic. Second, if the n-bonding 
is not strong enough, it may break down 
and all p-orbitals may be filled to become 
lone pairs because of the energy gained 
through cation-anion interactions. 

The situation is rather different for 
Wade's rule clusters. Their polyhedral ge- 

ometries (see the fig- 
ure) allow the forma- 
tion of only skeletal o- " ' p orbitals, in addition to 

Some species associated with aro- lower lying lone pairs 
rnatic or otherwise delocalized *,,: .' (or B-H bonds in the 
bonding. Clockwise from the upper %- ,o case of the boranes) that 
left: aromatic (x-bonded) benzene are always filled. There 
(C6H,) and AbM- and Wade's rule (o- is no evidence that sta- 
bonded) clusters Gas8- and B6H6'-. bilization of lone pairs 
Lower right: the cation environment of by cations drastically 
Trl17- (Tr = Ga, In, orll) in solid G8Trll. alters the electronic 
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structures of the many Wade's rule clusters are expected because of the availability of for heavier elements such as Ga, In, and 
of the heavier group 13 to 15 elements. low-energy, vacant "frontier orbitals," TI, for which the strength of x-bonding 

Over the past decade, we and others which play an important role in many reac- has been controversial and the lone-pair 
have shown that the remarkable stability of tions in condensed systems (9). [In contrast, states are increasingly core-like (2, 11). 
alkali metal salts of Ga, In, and TI clusters isosteric clusters of later, electron-richer 
must in part or iginate  from the large main-group metals, such as the square pla- References and Notes 
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means the only important factor determining their 
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compounds only with Li. the solid state. Chemistry is exciting when seem obvious, cation effects have only recently been 
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electrostatic energies (74). 
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N O T A  BENE:  A N I M A L  B E H A V I O R  so that they were no longer in phase as they traveled further 
away from their source. This hints that elephants may make 

Texas Elephants Stomp to Victory their rumbles and foot stomps loud enough to produce separate 
acoustic and seismic waves. 

The old saying "putting an ear to the ground" may turn out Through mathematical modeling, the investigators estimated 
to be literally true for elephants, according to a recent re- that the seismic waves created by their stomping elephants trav- 
port by O'Connell-Rodwell and her colleagues (1).When eled at least 36 krn. Conceivably, these long-distance seismic sig- 

elephants generate their low-frequency vocalizations (rumbles), nals may enable elephants to communicate with other herds. The 
acoustic sound waves traveling through the air are accompanied location of a distant herd could be pinpointed by assessing the 
by seismic waves that travel through the ground. Given that a va- time delay between the arrival of seismic and acoustic signals. 
riety of creatures, from insects to rodents and even the enormous Elephants are known to move toward thunderstorms that are 
elephant seal, use the generation and detection of terrestrial vi- more than 25 km away, too far for them to hear the sound of 
brations to communicate, O'Connell-Rodwell and her team won- thunder. It is possible that they can detect the terrestrial vibra- 

dered if elephants, too, have this tions associated with distant storms, presumably a major advan- 
seismic signaling capability. tage in their search for new water sources. 

Eschewing the grasslands o f  Generating seismic signals is easy, but what about detecting 
Africa for a residential facility in them? The elephant's trunk has mechanoreceptors that respond 
Texas, the scientists analyzed acous- to mechanical pressure. There may also be similar receptors in 
tic and seismic signals generated by the elephant's well-innervated foot pads. These mechanorecep- 
two captive Asian elephants. When- tors may explain foot-lifting behavior during which elephants 
ever the elephants "rumbled" or  lean forward and lift up one foot, possibly to improve their sen- 
stomped their feet during mock sitivity to ground vibrations. 
charges, seismic data were collected Establishing that elephants use seismic signaling for long- 
with geophones-sensitive micro- distance communication is no easy task. Undaunted, O'Connell- 

phones placed 10 m and 30 m from thk elephants' pen that trans- Rodwell and her team plan to train their elephants to respond to 
formed terrestrial vibrations into electrical signals. Simultaneous- seismic waves by pulling a lever with their trunk or pressing a 
ly, acoustic data were collected with audio equipment. button with their feet-with, of course, the provision of a re- 

The seismic and acoustic waves generated by rumbles and ward for the correct response. 
foot stomps had similar frequencies (20 to 24 Hz) that fell with- - 4 R l . A  SMITH 
in the ideal range for the long-distance transmission of low-fre- 
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