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higher titer vector, whereas the three births, 
including the transgenic one, and the blighted 
pregnancy originated from the lower titer 
LNEFEGFP-(VSV-G) vector (10' cfulml; 
Table I) .  Although only one live offspring is 
shown to be transgenic, we cannot yet ex-
clude the possibility of transgenic mosaics in 
the others. We have neither demonstrated 
germline transmission nor the presence of 
transgenic sperm; this must await ANDi's 
development through puberty in about 4 
years. Vector titers and volume injected may 
play crucial roles in gene transfer efficiency. 
These offspring and their surrogates are now 
housed in dedicated facilities with ongoing, 
stringent monitoring. 

Nonhuman primates are invaluable models 
for advancing gene therapy treatments for dis- 
eases such as Parlunson's (24) and diabetes 
(25), as well as ideal models for testing cell 
therapies (26) and vaccines, including those for 
HIV (27, 28). Although we have demonstrated 
transgene introduction in rhesus monkeys, sig- 
nificant hurdles remain for the successful ho- 
mologous recombination essential for gene tar- 
geting (29). The molecular approaches for mak- 
ing clones [either by embryo splitting (30) or 
nuclear transfer (31-36)], utilizing stem cells 
(37-39), and now producing transgenic mon- 
keys, could be combined to produce the ideal 
models to accelerate discoveries and to bridge 
the scientific gap between transgenic mice and 
humans. 
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The ability t o  group stimuli into meaningful categories is a fundamental cog- 
nitive process. To explore its neural basis, we trained monkeys t o  categorize 
computer-generated stimuli as "cats" and "dogs." A morphing system was used 
t o  systematically vary stimulus shape and precisely define the category bound- 
ary. Neural activity in  the lateral prefrontal cortex reflected the category of 
visual stimuli, even when a monkey was retrained with the stimuli assigned t o  
new categories. 

Categorization refers to the ability to react sim- 
ilarly to stimuli when they are physically dis- 
tinct, and to react differently to stimuli that may 
be physically similar (I). For example, we rec- 
ognize an apple and a banana to be in the same 
category (food) even though they are dissimilar 
in appearance, and we consider an apple and a 
billiard ball to be in different categories even 
though they are similar in shape and sometimes 
color. Categorization is fundamental; our raw 
perceptions would be useless without our clas- 
sification of items as furniture or food. Al- 
though a great deal is known about the neural 
analysis of visual features, little is known about 
the neural basis of the categorical information 
that gives them meaning. 
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In advanced animals, most categories are 
learned. Monkeys can learn to categorize stim- 
uli as animal or non-animal (2), food or non- 
food (3), tree or non-tree, fish or non-fish (41, 
and by ordinal number (5). The neural correlate 
of such perceptual categories might be found in 
brain areas that process visual form. The infe- 
rior temporal (IT) and prefrontal (PF) cortices 
are likely candidates; their neurons are sensitive 
to form (6-9) and they are important for a wide 
range of visual behaviors (10-12). 

The hallmark of perceptual categorization is 
a sharp "boundary" (13). That is, stimuli from 
different categories that are similar in appear- 
ance (e.g.. applebilliard ball) are treated as 
different, whereas distinct stimuli within the 
same category (e.g., applebanana) are treated 
alike. Presumablv. there are neurons that also 
represent such sharp distinctions, n i s  is diffi- 

assess with a subset of a large' 
amorphous category (e.g.5 food, human. etc). 
Because the category boundary is unknown, it 
is unclear whether neural activity reflects cate- 
gory membership or physical similarity. 

312 	 12 JANUARY 2001 VOL 291 SCIENCE www.sciencemag.org 

mailto:ekm@ai.mit.edu


We used a three-dimensional morphing sys- 
tem to generate stimuli that spanned two cate- 
gories, "cats" and "dogs." Three species of cats 
and three breeds of dogs served as prototypes 
(14-1 6); the morphed images were linear com- 
binations of all possible arrangements between 
them (Fig. 1). By blending different amounts of 
"cat" and "dog," we could continuously vary 
the shape and precisely define the category 
boundary (1 7). Thus, stimuli that were close to 
but on opposite sides of the boundary could be 

similar, whereas stimuli that belonged to the 
same categoIy could be dissimilar (e.g., "chee- 
tah" and "housecat") (18). 

Two monkeys performed a delayed match- 
to-category (DMC) task (Fig. 2A) that required 
judging whether a sample and test stimulus 
were from the same category (19). Performance 
was high (about 90% correct), even when the 
samples were close to the category boundary 
(Fig. 2B). The monkeys classified dog-like cats 
(60:40 cat:dog) correctly about 90% of the 

time, and misclassified them as dogs only 10% 
of the time; they did as well with cat-like dogs 
(60:40 dog:cat). 

We made recordings from 395 neurons 
from the lateral PF cortices of two monkeys 
(20) (Fig. 3A). The majority of neurons were 
activated during the sample andlor delay inter- 
val (2531395 or 64%) (21). They often reflected 
the sample's category. Nearly one-third of re- 
sponsive neurons (821253) were category-selec- 
tive in that they exhibited an overall difference 

2clws boundary 

"dog." 

Fig. 1. The stimuli. (A) Monkeys learned to categorize randomly generated "morphs" from the vast number of possible blends of six prototypes. For 
neurophysiological recording, 54 sample stimuli were constructed along the 15 morph lines illustrated here. The placement of the prototypes in this 
diagram does not reflect their similarity. (B) Morphs along the C1-Dl line. 
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I 

jt (Nonrnatch) 
60Dm I 

Fig. 2. Task design and behavior. (A) A sample was followed by a delay and '- 

ma a test stimulus. If the sample and test stimulus were the same category (a 
match), monkeys were required to release a lever before the test disap- 

row aolrc : evn I- peared. If they were not, there was another delay followed by a match. Equal numben of match and ' Dog Dog Dog nonmatch trials were randomly interleaved. (B) Average performance of both monkeys. Red and blue 

bMd.w bats indicate percentages of samples dassified as "dogu and "cat," respectively. 

Fig. 3. Recording loca- 
tions and single neu- 
ron example. (A) Re- 
cording locations in 
both monkeys. A, an- 
terior; P, posterior; D, 
dorsal; V, ventral. 
There was no obvious 
topography to  task- 
related neurons. (B) 
The average activitv Monkey 2 

P 
of a singleneuron in Baseline Sample Delay 
response to  stimuli at 13 

Choh 

the six morph blends. 
The vertical lines cor- 
respond (from left to  
right) to  sample onset, 
offset, and test stimu- 
lus onset. The inset 
shows the neuron's 
delay activity in re- 
sponse to  stimuli 
along each of the nine 
between-class morph 
lines (see Fig. 1). The 
prototypes (Cl, C2, 
C3, Dl,  D2, and D3) 
are represented in the 
outermost columns; 
each appears in three 
morph lines. A color 
scale indicates the ac- 
tivity level. 

llm (ms) 

in activity during the sample and/or the interval, 35/65; delay interval, 21/44) and 
delay interval to cats versus dogs. Similar dogs (sample, 30165; delay, 23/44). 
numbers of neurons preferred cats (sample Figure 3B shows an example of a single 

neuron that exhibited greater activity in re- 
sponse to dogs than to cats and responded 
similarly to samples from the same category, 
regardless of their degree of dogness or catness. 
Its activity was different in response to stimuli 
near the category boundary, the cat-like dogs 
(60:40 dog:cat) versus the dog-like cats (60:40 
cat:dog) (22), but there was no difference in 
activity elicited by these stimuli and by their 
respective prototypes (the 100% cats or dogs) 
(23). The inset in Fig. 3B shows the neuron's 
activity in response to each of the 54 samples. It 
exhibited overall greater activity in response to 
dogs than to cats, but there were small differ- 
ences within categories. Just a few stimuli elic- 
ited activity that was similar to that from the 
other category. These stimuli were not consis- 
tent across different neurons, however. Across 
the population of neurons, category activity ap- 
peared at the start of neural responses to the 
sample, about 100 ms after sample onset (24). 

We examined all stimulus-selective neurons, 
irrespective of whether they were category-se- 
lective per se (25). For each neuron, we com- 
puted the difference in activity between pairs of 
samples at different positions along each be- 
tween-category morph line (Fig. 1A). In Fig. 4, 
A and B, each neuron's average difference in 
response to pairs of samples from the same 
category (within-category difference, WCD) is 
plotted against its difference in response to sam- 
ples from different categories (between-catego- 
ry difference, BCD). If neurons were not sensi- 
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Within-class difference in firlng rate (Hz) Within-class difference in firing rate (Hz) 

Preferred category J'Nonpteferred category Preferred category f Nonprefened category 

Fig. 4. Category effects in a neural population. (A and B) Average differences in activity in response 
to  samples from the same (WCD) and different (BCD) categories for the sample (A) and delay 
interval (0). Each point represents one neuron. The dotted line indicates equal differences 
irrespective of category. The solid line indicates the regression line. (C and D) Average activity of 
the neural population (and standard error) in response t o  stimuli at different morph levels of their 
preferred and nonpreferred categories for the sample (C) and delay (D) intervals. 

tive to categories, these measures should be after defining two new category boundaries 
similar (i.e., BCDWCD ratios should equal 1 that were orthogonal to the original boundary 
and cluster around the diagonal). Instead, the (Fig. 1A). This created three new classes, 
BCD values are significantly higher than WCD each containing morphs centered around one 
values. This indicates greater activity differenc- cat prototype and one dog prototype (e.g., the 
es in response to samples from different catego- cheetah and the "doberman"). After training, 
ries, especially during the delay (26). the monkey was able to perform the new 

The average activity of all stimulus-selec- three-category DMC task at >85% correct. 
tive neurons at different morph levels is shown We then recorded from 103 PF neurons from 
in Fig. 4, C and D (27). There was a significant the same depths and locations in the PF cor- 
difference in activity between the categories tex, using the same samples as in the original 
(28), but activity was similar at the different two-category task. 
morph levels within each category (29), indi- Neural responsiveness (58% or 601103) 
cating greater sensitivity to stimulus category (33) and stimulus-selectivity (35% or 21160) 
than to identity. Few category-selective neurons (34) during the three-category task was sim- 
conveyed significant identity information (sam- ilar to that during the two-category task (64% 
ple interval, 20165 or 3 1%; delay interval, 10144 or 2531395, and 28% or 731253, respective- 
or 23%) (30). Also, PF neural responses to the ly), but the original categories were no longer 
test stimulus seemed to reflect category evalu- reflected in activity (35). Instead, the three 
ation. Many PF neurons showed enhanced or new categories were evident in delay activity 
suppressed activity when the test stimulus (36). As during the two-category task, cate- 
matched the category of the sample (1 121395 or gory information was stronger during the de- 
28%) (31). Similar effects were reported for lay (37), possibly because it is relevant for 
identity matches in the PF and IT cortex (32). the judgment after the delay. "Prospective 

Because our monkeys had no experience activity" is stronger nearer the relevant event 
with cats or dogs before training, it seemed (38, 39) and appears earlier within a trial as task 
likely that the categories were learned. We proficiency increases (40). The monkey was not 
thus retrained one monkey on the DMC task as proficient at the three-category task, and its 

reaction times were significantly longer (41). 
Categorization of sensory inputs is the nex- 

us between perception and cognition; thoughts 
and behaviors depend on knowledge of the 
types of things around us. The sharp transition 
in neural activity we observed is consistent with 
a "classical," perceptual category boundary. 
More conceptual categories can have ''fizzy" 
boundaries and are unlikely to exhibit such 
properties (42). Perceptual categorization relies 
on extraction of the combinations of features 
defining a category. These features were not 
explicitly instructed, were acquired by training, 
and were necessarily multivariate abstractions: 
the categories differed by more than a few 
simple features. PF activity could have reflect- 
ed, andor resulted in, a shifting of attention to 
those features (43). 

These results fit well with studies suggest- 
ing that PF neural circuitry is malleable. Expe- 
rience has been shown to induce and modify the 
sensitivity of PF neurons to specific stimuli (44, 
45), and PF activity reflects learned associa- 
tions and rules (40, 46, 47). Of course, the PF 
cortex is not likely to be the only brain area 
involved in categorization. The PF cortex is 
interconnected with tem~oral lobe structures 
important for long-term memory (48), includ- 
ing the IT cortex, whose neurons have stimulus 
specificities that could contribute to categoriza- 
tion (7, 49). Interactions between the PF and IT 
cortices underlie the storage andor recall of 
visual memories and associations (50-52), but 
not necessarily visual short-term memory (53). 
The storage and recall of categories may also 
require such collaboration. 
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Role of ER Export Signals in 
Controlling Surface Potassium 

Channel Numbers 
Dzwokai Ma,' Noa Zerangue,' Yu-Fung Lin,' Anthony ~ o l l i n s , ~  

Mei Yu,' Yuh Nung Jan,' Lily Yeh   an'* 
Little is known about the identity of endoplasmic reticulum (ER) export signals 
and how they are used to regulate the number of proteins on the cell surface. 
Here, we describe two ER export signals that profoundly altered the steady- 
state distribution of potassium channels and were required for channel local- 
ization to the plasma membrane. When transferred to other potassium channels 
or a C protein-coupled receptor, these ER export signals increased the number 
of functional proteins on the cell surface. Thus, ER export of membrane proteins 
is not necessarily limited by folding or assembly, but may be under the control 
of specific export signals. 

Ion channels control neuronal signaling, hor- 
mone secretion, cell volume, and salt and 
water flow across epithelia (I). The number 
of cell surface channels is critical to these 
physiological functions (1). Whether for- 
ward-trafficking signals regulate the supply 
of ion channels to the plasma membrane is 
not known. 

Export from the ER to the Golgi is a key 
early event in forward traffic. Numerous 
studies suggest that ER export is limited pri- 
marily by quality control (2, 3). However, 
certain secreted and membrane proteins are 

concentrated in the process of ER export 
(4-6). A motif containing Asp, a variable 
amino acid, and Glu (DXE) (7-9) in vesicular 
stomatitis virus glycoprotein (VSV-G) has 
been reported to accelerate the ER export. It 
is not clear whether ER export signals control 
the steady-state levels of endogenous mem- 
brane proteins destined for later compart- 
ments, including the plasma membrane. 

The inwardly rectifying potassium (Kir) 
channels (10) I(lrl.1 (ROMK1) and Kir2.1 
(IRK1) were efficiently expressed in the plasma 
membrane in Xenopus oocytes, whereas several 
other Kir familv members exhibited Door ex- 
pression or delayed expression kinetics. To test 

'Howard Hughes Medical Institute, University of Cal- 
ifornia, San Francisco, San Francisco. CA 94143-0725, 

whether these differences with the 

USA. 2Colleee of Pharrnacv. Oreeon State Universitv, Presence or absence of trafficking signals, we 
Corvallis, 0: 97331-3507, USA" first examined the possible involvement of the 
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mail: gkw@itsa.ucsf.edu 1A). Indeed, efficient surface expression (11) 
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