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(YD) epoch in the North Atlantic region 
and to the warming interval after the ACR in 
Antarctica. 

Data from Vostok suggest an important 
role of the Southern Ocean in regulating the 
glacial-interglacial CO, changes (5). This 
role is confirmed by measurements from Tay- 
lor Dome for shorter time intervals in the last 
glaciation (16) .The CO, increase in interval 
I, which occurred before any substantial 
warming in the Northern Hemisphere, is con- 
sistent with the present view of the role of the 
Southern Hemisphere for causing the CO, 
increase. 

Methane starts to increase parallel to CO, 
in interval I. The methane increase is in 
agreement with the Greenland Ice Core 
Project (GRIP) record (28). The parallelism 
of the methane and CO, increase in interval I 
is somewhat surprising because the causes for 
methane variations are certainly different 
from those for CO,. It is assumed that meth- 
ane concentration changes were mainly due 
to changes of the extent and activity of wet- 
lands in northern latitudes and the tropics 
(29). No substantial variations can be seen in 
the GRIP stable isotope record during this 
time period, but a small change of the meth- 
ane production in low and mid-latitudes is not 
necessarily recorded in a Greenland temper- 
ature record. There is no obvious cause of the 
reduced rates of growth in CO, and methane 
between intervals I and I1 visible in the stable 
isotope records of Dome C or of GRIP. 

The fast increases of CO, and methane 
concentrations between intervals I1 and 111, at 
-13.8 ky B.P. according to the Dome C time 
scale, correspond to the fast warming in the 
Northern Hemisphere observed at 14.5 ky 
B.P. on the GRIP time scale. This warming 
was probably caused by enhanced formation 
of North Atlantic Deep Water (NADW) (30), 
suggesting that the sudden CO, increase 
could have been caused by changes in ther- 
mohaline circulation. The methane increase, 
on the other hand, is thought to have been 
caused by an intensified hydrological cycle 
during the BIA warm phase, which led to an 
expansion of wetlands in the tropics and 
northern latitudes. 

CO, decreased slightly during interval I11 
and then increased during interval IV. The 
methane concentration follows the tempera- 
ture evolution of the Northern Hemisphere in 
intervals I11 and IV as expected. The accel- 
erated CO, increase at the end of interval IV 
probably is connected to the fast warming in 
the Northern Hemisphere rather than to any 
climate or environmental evolution in the 
Southern Hemisphere, because it is synchro- 
nous with the methane increase. 

These data support the idea that the South- 
em Ocean was an important factor in regulating 
the CO, concentration during the last transition. 
However. the fast increases between intervals I1 

and I11 and at the end of interval IV show that 18. j. Schwander et a/.. in preparation. 


additional mechanisms in the Northern Hemi- 19. Throughout the remainder of the report, the preci- 

sion of the ages is given in decimals of ky B.P. in order sphere influenced CO,, presumably through 
to facilitate the identification in Fig. 1. Nevertheless, 

changes in NADW formation. the uncertainty in the absolute time scale remains as 
described in the text. 
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Evolution of Universal Grammar 
Martin A. ~owak , ' *  Natalia L. ~ornarova,' .~Partha Niyogi3 

Universal grammar specifies the mechanism of language acquisition. I t  deter- 
mines the range of grammatical hypothesis that children entertain during 
language learning and the procedure they use for evaluating input sentences. 
How universal grammar arose is a major challenge for evolutionary biology. We 
present a mathematical framework for the evolutionary dynamics of gammar 
learning. The central result is a coherence threshold, which specifies the con- 
dition for a universal grammar t o  induce coherent communication within a 
population. We study selection of grammars within the same universal gram- 
mar and competition between different universal grammars. We calculate the 
condition under which natural selection favors the emergence of rule-based, 
generative grammars that underlie complex language. 

Language consists of words and rules. The their mental grammar spontaneously and 
finite ensemble of memorized words is called without formal training. Children of the same 
the mental lexicon, whereas the set of rules is speech community reliably learn the same 
called the mental grammar of a person (1,2). grammar. Exactly how the mental grammar 
Grammar is the computationa! system (3)that comes into a child's mind is a puzzle. Chil- 
is essential for creating the infinite express- dren have to deduce the rules of their native 
ibility of human language. Children acquire language from sample sentences they receive 

from their parents and others. This informa- 
tion is insufficient for uniquely determining 
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anism to generate a search space for all can- 
didate mental grammars and (ii) a learning 
procedure that specifies how to evaluate the 
sample sentences (8-13). Universal grammar 
is not learned but is required for language 
learning. It is innate (14-16). Most linguists 
claim that the acquisition of language is done 
by specific neuronal circuitry within the brain 
and not by the general purpose problem-
solving ability of the brain (17 ) .Therefore, it 
should be possible to observe genetic defects 
of language acquisition (18). 

The emergence of language is a major tran- 
sition in evolution (19).Language permits efli- 
cient transfer of nongenetic information be- 
tween individuals and thus leads to a new mode 
of evolutionary change. We do not attempt to 
explain detailed linguistic properties of human 
language but general aspects that are relevant 
for its evolution and its distinction from animal 
communication (20-26). 

A key issue in cognitive science and lin- 
guistics is the question of how much is innate 
and how much is learnt in human language. 
Most attempts to quantify the complexity of 
universal grammar come from the concept of 
learnability (27,28);the object of study is the 
ideal speaker-hearer pair in a homogeneous 
linguistic community. Here, we consider a 
heterogeneous population and its evolution- 
ary dynamics. We introduce the notion of 
grammatical coherence and quantify the con- 
dition for a universal grammar to induce co- 
herent communication in a population. Thus, 
evolutionary considerations in addition to 
the traditional learning-theoretic ones are 
brought into play in the discourse on the 
maximum possible complexity of universal 
grammar. 

Consider a universal grammar, U, which 
generates a search space that consists of n 
candidate grammars, G , ,  . . . ,G,. Each gram- 
mar, Gz,is a rule system that defines a set of 
valid sentences. Denote by a,, the probability 
that a speaker who uses Gi formu-
lates a sentence that is compatible with gram- 
mar G,. The matrix A = [a,] describes the 
painvise relation among the n grammars. We 
have 0 5 acl5 1 and a,, = 1 .  

We assume there is a reward for mutual 
understanding. The payoff for an individual 
using G, communicating with an individual 
using GI is given by F(G,,G,) = (112)(a, + 
a,,). This is the average probability that G, 
generates a sentence that is parsed by GI and 
vice versa. Note that F(Gz,Gi)= 1 .  Hence, in 
our first model, all n grammars are equally 
powerful and allow the same level of com- 
munication (29). 

We denote by x, the frequency of individ- 
uals who use grammar G,. The average pay- 
off of each of these individuals is given by x 
= ClxJF(Gt,GJ).We assume that payoff 
translates into reproductive success: Individ- 

spring. Children learn the language of their j f i .  Here X is a number between 0 and 1 .  It 
parents, and this learning process can be sub- is possible to show that such asymmetric 
ject to mistakes. Denote by Q,, the probability solutions exist and are stable provided that q 
that a child learning from a parent with gram- exceeds a threshold value given by q ,  = 
mar Gi will end up speaking grammar G,. 2&1(1 + &). The symmetric solution los- 
With these assumptions, the population dy- es its stability when q exceeds the threshold 
namics are given by q, = 1 - ( 1  - a)l(na).These results hold for 

n >> lla. (If instead lla > n >> 1 ,  then q ,  = 

2 l f i  and q, = 112.) Therefore, if q < q,,  
only the symmetric solution is stable. If q ,  < 
q < q,, then both the symmetric and the 

Here + = z z x z f ;is the average fitness or asymmetric solutions are stable; which one 
grammatical coherence of the population; it is will be adopted depends on the initial condi- 
the probability that a sentence said by one tions. Finally, for q > q,, only the asymmet- 
person is understood by another person. The ric solutions are stable. Hence, q > q ,  is a 
total population size is constant; we have 2,x, necessary condition for the population to con- 
= 1 (30). verge to a coherent grammar, whereas q > q, 

In general, Eq. 1 can have multiple stable is a sufficient condition (Fig. 1). 
or unstable equilibrium solutions. For learn- These conditions specify a "coherence 
ing without mistakes, n asymmetric equilib- threshold" for universal grammar. In general, q 
rium solutions of the form xi = 1 and xl = 0 will be a declining h c t i o n  of n. Therefore, 
(for all j f i) exist and are stable. Such q(n)> q ,  is an implicit condition for the max- 
solutions correspond to situations where all in- imum size of the search space generated by 
dividuals of a population have adopted the universal grammar. The coherence threshold is 
same grammar. In contrast, for high error rates, a necessary condition for evolution of complex 
the only stable equilibrium solution is one in language: Only a universal grammar that satis- 
whlch all grammars occur at roughly similar fies the coherence threshold can lead to the 
frequencies. We want to analyze the following emergence of grammatical communication. 
question: How accurate does the learning pro- Let us now calculate the coherence thresh- 
cess have to be for most individuals of the old for two specific learning procedures that 
population to use the same grammar? In other determine how to evaluate the input sentenc- 
words, when does a universal grammar induce es. We will consider a "memoryless learner" 
coherent grammatical communication? and a "batch learner." Roughly speaking, a 

Consider the special case where all gram- memoryless learner is the simplest and a 
mars have the same distance from each other, batch learner the most sophisticated mecha- 
hence ali = a for all i f j, where a is a nism within a range of reasonable possibili- 
number between 0 and 1. In accordance, we ties. Therefore, the actual learning mecha- 
have Qzz= q and Q, = ( 1  - q)l(n - I ) ,  nism used by children will have a perfor- 
where q is the probability of learning the mance between these two bounds. 
correct grammar or the accuracy of grammar The memoryless learner algorithm de-
acquisition. The symmetric solution, xi = lln scribes the interaction between a learner and 
for all i, always exists. Asymmetric equilib- a teacher. Suppose the teacher uses grammar 
rium solutions with dominant grammar Giare G,. The learner starts with a randomly chosen 
given by xz = X and x, = ( 1  - X)l(n - I ) ,  hypothesis, Gz. The teacher generates sen-

Fig. 1. Bifurcation diagram 
showing the frequency of the 
most abundant grammar in a 
population versus the probabili- 
ty, q ,  that children correctly ac- 
quire the grammar of their par- 
ents. All n grammars have the 
same distance from each other. 
We have a,j = a for i # j and aii 
= 1. The n asymmetric solutions 
are given by xi = X and x. = (1 -
X)l(n - 1 ) for a specificJi and all 
j # i. Forn  >> 1, we have X = 
fa12)f l  ? fi),where D = 1 -
4[(la' q ) / q  2 j ja l ( i  - a)] .  The , , , , , , , , , , , , , , 

. 
, ,., ., ,A

equilibrium frequency of the pre- 0.90 0.92 0.94 0.96 0.98 1.X I  
dominating grammar does not Accuracy of grammar acqu~sition,q 
depend on n. In the limit where q 
approaches 1, the frequency of the most common grammar is simply given by q and grammatical 
coherence is given by q 2. The asymmetric solutions exist for q > q,. Each solution has a stable and 
an unstable branch. The symmetric solution, xi = l l n ,  loses stability for q > q2. Parameter values 

uals with a higher payoff produce more off- are a = 112 and n = 10. Dashed lines correspond t o  unstable solutions. 
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tences consistent with G,. As long as these 
sentences are also consistent with G,, the learn- 
er maintains his hypothesis. If a sentence occurs 
that is not consistent with Gi, the learner picks 
at random a different hypothesis, GI. After b 
sample sentences, the process stops, and the 
learner remains with his current hypothesis. 
This learning algorithm defines a Markov pro- 
cess. The transition probabilities depend on the 
teacher's grammar and on the a,, values. For the 
special case where av = a for all i +j and n >> 
1, the probability of learning the teacher's 
grammar is q = 1 - [ l  - (1 - a)lnIh. The 
threshold values, y, and y,, can be restated in 
terms of the minimum number of sampling 
sentences per individual required for the popu- 
lation to converge to a coherent grammar. From 
y > y,, weobtain 

where C, = [ l / ( l  - a)] log[(l + &)/(I -

G)].
Hence, for a memoryless learner, the 

Fig. 2. Grammatical coherence 1.00 
of a population versus the num- 
ber of sample sentences, b, per 
individual for stable equilibrium a 0.90 

solutions of Eq. 1. There are n = 2
20 grammars with randomly 2 0,80 
chosen pairwise distances; the a, 8 
values (for i # j )  are taken from 3 a uniform distribution on (0,1), .% 0.70 
and a,, = 1. Children learn the E 
grammar of their parents ac- E 
cording t o  a memoryless learn- 8 0.60 
ing algorithm. The grammatical 
coherence (or average fitness) of 
the population is given by + = 
Z,xih, where 6 = (1/2)xjxj(a, + 0 
aj,). It is a measure of mudual 
understanding in the population. 

number of sample sentences has to exceed a 
constant times the number of candidate 
grammars. 

The memoryless learner makes the mini- 
mum demand on the cognitive ability of the 
individual. The other extreme is a "batch 
learner" who memorizes b sentences and then 
chooses the grammar that is most consistent 
with all memorized sentences. For the batch 
learner, we can show that the probability of 
learning the correct grammar, in a generic 
case, is given by q = [I - (1 - at')"]1[na"]. 
Together with q > q,,  this leads to 

h > C,  Iogn ( 3 )  

where C, = lllog(1la). Hence, a batch learn- 
er requires that the number of sample sen-
tences exceeds a constant times the logarithm 
of the number of candidate grammars. 

Because any realistic learning procedure has 
a performance somewhere between memory- 
less learners and batch learners, Eqs. 2 and 3 

100 200 300 400 500 
Learning period (in sample sentences). b 

For small b, all grammars occur at roughly similar frequency; the coherence is low. For larger values 
of b, stable equilibria appear wi th the majority of the population adopting the same grammar. The 
first critical transition occurs roughly at b = 3.57, which is Eq. 2 with a = 112. Some grammars lead 
t o  stable equilibrium solutions only for large numbers of sample sentences. In the limit b + m, 
there are n stable equilibria corresponding t o  all people using one of the n grammars. 

provide boundaries for the maximum size of 
the search space that is compatible with 
grammatical coherence within a population 
(31). 

Now consider the situation where the can- 
didate grammars, G , , . . ., G,,, have different 
distances from each other. Figure 2 shows the 
equilibrium solutions for a case with n = 20 
candidate grammars, where the numbers a,, are 
randomly chosen from a uniform distribition 
on (0,l). For a small number of sample sentenc- 
es, b, all grammars occur roughly at the same 
frequency and the grammatical coherence of 
the population is low. As b increases, equilib- 
rium solutions become stable, where the major- 
ity of the population uses a particular grammar. 
The critical transition occurs at a b value that is 
approximately given by Eq. 2 with a = 112. It 
can be shown that there are exactly n stable, 
one-grammar solutions if b is large enough and 
a,, < 1 for all i + j. 

The candidate grammars could differ in 
their overall performance. Some grammars 
could describe a larger number of concepts or 
be less ambiguous than others. Hence, candi- 
date grammars can have different fitness val- 
ues (32). In such a scenario, the one-grammar 
solutions assume different fitness values even 
for large b. Therefore, we can imagine an 
evolutionary process where the population is 
searching for fitter candidate grammars. Sup- 
pose a population uses a particular grammar, 
G , .  Someone invents a modification that al- 
ters the grammar to G,. A fluctuation could 
shift the whole population to adopt G,. Such 
transitions are more likely to occur in a small 
population. They are favored if the two gram- 
mars are fairly similar and G, has a higher 
fitness than G , .  Hence, the model provides a 
framework for studying the cultural, evolu- 
tionary adaptation of grammar within the 
same universal grammar (33). 

To further illuminate the selective pres- 
sures that act on the design of universal gram- 
mar, we study the competition between dif- Fig.3.Naturalselectionchooses 

a limited period of grammar ac- 
quisition. The time it takes t o  
learn grammar is proportional to  
the number of sample sentences, 
b, that are being evaluated. The 
evolutionarily stable value of b 
maximizes the product r(b)q(b) 
(solid line), which represents the 
rate of producing offspring that 
have acquired the correct gram- 
mar (same grammar as the par- 
ent). Here r(b) is the rate of pro- 
ducing offspring that have ac-
quired grammatical communica- 
tion, and q(b) is the probability 
of learning the correct grammar. 
The selected value of b is marked 
as ESS (evolutionarily stable 

1.0 
ESS Maximum fitness -

0.8 7 

-2 0.6 
5 

if: -0.4 

0.2 -
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ferent universal grammars (34).We state two 
specific results. 

First, consider universal grammars with 
the same search space and the same learning 
procedure, the only difference being the num- 
ber of input sentences, b. This quantity is 
proportional to the length of the learning 
period. We find that natural selection leads to 
intermediate values of b (Fig. 3).For small b, 
the accuracy of learning the correct grammar 
is too low. For large b. the learning process 
takes too long and is too costly. This obser- 
vation can explain why there is a limited 
language acquisition period in humans. 

Second. consider universal -mammars that 
differ in the size of their search space, n, but 
have the same learning mechanism and the 
same value of b. In general, there is selection 
pressure to reduce n. Only if n is below the 
coherence threshold can the universal grammar 

strategy). The value b, represents the coherence threshold. For this figure, we chose r(b) = l l ( 1  + 
0.01b) and q(b) = 1 - [I- (1 - a)Inlb (as defined for the memoryless learner). The evolutionary 
stability analysis uses the two-universal grammar equation of (34) and is exact for large values of 
n. The evolutionarily stable strategy does not maximize the fitness of the population, which is given 
by the product r(b)+ (dashed line). Parameter values are n = 10, a,, = 1, and a,i = 0.1 for i # j. 
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induce grammatical communication. Moreover, 
as n declines, the accuracy of grammar acqui- 
sition increases (35).There can, however, also 
be selection for larger n: Suppose universal 
grammar U, is larger than U, (that is, n, > n,). 
If all individuals use a grammar, G,, that is both 
in U,  and U,, then U, is selected. Now imagine 
that someone invents a new advantageous 
grammatical concept that leads to a modified 
grammar G, that is in U,, but not in U,. In this 
case, the larger universal grammar is favored. 
Hence, there is selection both for reducing the 
size of the search space and for remaining open 
minded to be able to learn new concepts. For 
maximum flexibility, we expect search spaces 
to be as large as possible but still below the 
coherence threshold. 

We now explore the conditions under whlch 
natural selection favors the emergence of a 
rule-based, recursive grammatical system with 
infmite expressibility. In contrast to such rule- 
based grammars, one might consider list-based 
grammars that consist only of a finite number of 
sentences. Such list-based grammars can be 
seen as very primitive evolutionary precursors 
(or alternatives) to rule-based grammars. Indi- 
viduals would acquire their mental grammar 
not by searching for underlying rules, but by 
simply memorizing sentence types and their 
meaning (similar to memorizing the arbitrary 
meaning of words). List-based grammars do 
not allow for creativity on the level of syntax. 
Nevertheless, whether or not natural selection 
favors the more complicated rule-based gram- 
mars depends on circumstances that we need to 
explore. 

Current human grammars can generate 
infinitely many sentence types, but for the 
purpose of transmitting information, only a 
finite number of them can be relevant. Natu- 
ral selection cannot directly reward the theo- 
retical ability to construct infinitely long sen- 
tences. Let us therefore consider a group of 
individuals that use N different sentence 
types (or syntactic structures). N specifies the 
number of sentence types that are relevant 
from the perspective of biological fitness. 

Now imagine individuals that learn their 
mental grammar by memorizing lists of sen- 
tence types. We can ask how many sample 
sentences, b, a child must hear for the whole 
population to maintain N sentence types. If 
all sentence types occur equally often, we 
simply obtain b > N (36). 

We can compare the performance of indi- 
viduals using list-based versus rule-based 
grammars. Using the result for batch learners, 
which have comparable memory require-
ments to the list learners, we find that the 
number of relevant sentence types, N,has to 
exceed a constant times the logarithm of the 
number of candidate grammars, n. We have 

logn
N>-


log(l!a) 

If this condition holds, then rule-based gram- 
mars are more efficient than list-based gram- 
mars and will have a fitness advantage (37). 

We have formulated a mathematical the- 
ory for the population dynamics of grammar 
acquisition and calculated the conditions for 
universal grammar to induce coherent gram- 
matical communication within a population. 
The key result is a "coherence threshold that 
relates the maximum size of the search space 
to the performance of the learning procedure. 
Only a universal grammar that satisfies the 
coherence threshold can promote the evolu- 
tion of grammatical communication. Our the- 
ory also describes the cultural evolution of 
different candidate grammars within the same 
universal grammar. We have studied compe- 
tition between universal grammars and out- 
lined that natural selection leads to a limited 
language learning period and search spaces of 
intermediate size. Finally, rule-based, gener- 
ative grammars can only evolve if the number 
N of sentences types, which are relevant with 
respect to biological fitness, exceeds the log- 
arithm of the number of candidate grammars, 
log n. Otherwise it would be more efficient to 
memorize sentence types associated with ar- 
bitrary meaning. In this case, language would 
have remained a rather dull communication 
system without any creative ability on the 
level of syntax. If, however, rule-based gram- 
mars are selected, then the potential for 
"making infinite use of finite means" (38) 
comes as a by-product. 

The general connection between learn- 
ing theory and evolutionary dynamics should 
be applicable to a wide variety of learning 
situations that arise in biology or artificial 
intelligence. For language acquisition, the 
theory makes testable predictions about the 
relation between the size of the search space 
and the performance of the learning proce- 
dure. For language evolution, this report is a 
step toward a quantitative understanding of 
how universal grammar can arise by natural 
selection. 
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using the expression s, to convey the meaning m,. 
Similarly, Q,, = ~(s,, rnr)lXJ~(sk, m,) = ~ ( m , ,  s,) is 
the probability of interpreting the expression sk to 
mean m,. The need to communicate meanings is 
related to events in the shared world of the linguistic 
community. Therefore, one can define a measure o 
on the set of possible meanings (2;) that speakers 
and hearers might wish to communicate with each 
other. Given this, we can define a$ = tr[P(')~1(Q(j))~], 
where A is a diagonal matrix such that A,, = ~(rn,) .  
This is the probability that an event occurs and is 
successfully communicated from a user of C, to a 
user of C,. F(G,,C,) is the probability that users of G, 
will have a successful communication with each oth- 
er. Communication might break down in one of two 
ways: (i) poverty: an event happens whose meaning 
cannot be encoded by C,, and (ii) ambiguity: an event 
happens whose meaning has an ambiguous encoding 
in G, leading to a possibility of misunderstanding. 
Thus, F(G,,G,) is a number between 0 and 1 and 
denotes the fitness of C,. Maximum fitness. F(C,,C,) = 
1, is achieved by grammars that can express every 
possible meaning (zero poverty) and have no ambi- 
guities. 
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another equilibrium. If the candidate grammars differ 
in their fitness, then the stochastic process performs 
an evolutionary optimization on the space of all 
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mars, U, and U,, can also differ in the number of 
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ered. Therefore, we have to take into account the 
rate of producing offspring with grammatical com-
munication; this rate is given by the declining func- 
tion r(b). An alternative interpretation is that r(b) 
describes the cost that is associated with Learning. 
The dynamics are described by 

=j.,= r(bZ)2yj2)f ~ 2 ) ~ ~ ~ 1by, 1, . . ., n2- i 
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We have flm)= x1~(Cjm), c:')) y l ~ (~~m) ,22+ 2; 
C/Z)), rn E (1, 2), and 41 = I;:f/')x,r(b,) + 2,:'f:) 
y,r(b,), where the superscripts 1 and 2 refer to U, and 
U,, respectively. 
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Plant disease resistance (R) genes control the recognition of specific pathogens 
and activate subsequent defense responses. We show that the Arabidopsis 
thaliana locus RESISTANCE TO POWDERY MILDEW8 (RPW8) contains two  nat- 
urally polymorphic, dominant R genes, RPW8.7 and RPW8.2, which individually 
control resistance t o  a broad range of powdery mildew pathogens. Although the 
predicted RPW8.1 and RPW8.2 proteins are different from the previously char- 
acterized R proteins, they induce localized, salicylic acid-dependent defenses 
similar t o  those induced by R genes that control specific resistance. Apparently, 
broad-spectrum resistance mediated by RPW8 uses the same mechanisms as 
specific resistance. 

The majority of characterized R genes partic- other plant species (I). Probes for conserved 
ipate in gene-for-gene interactions, in which sequences in NBS-LRR motifs have detected 
the R product appears to act as a receptor that numerous homologs in the genomes of crop 
recognizes a product of the corresponding plants (7), and more than 100 in the genome 
avirulence (Avr) gene from the pathogen, in- ofA. thaliana (8). The A. thaliana loci RPW7 
ducing defense responses. The R gene-medi- and RPW8 from accession Ms-0 map to the 
ated defenses typically involve a rapid, local- same interval on chromosome 3. and confer 
ized necrosis, or hypersensitive response resistance to the powdery mildew pathogens 
(HR), at the site of infection, and the local- Erysiphe crucijerartlm UEAl and E. cichora-
ized formation of antimicrobial chemicals ceartlm UCSCI, respectively (9). During the 
and proteins that restrict growth of the patho- mapping of RPW8, we discovered that this 
gen (I, 2). Many crops rely on R genes for locus segregated from the mapped NBS-LRR 
resistance to specific pathogens, but resis- R-gene homologs (8) ,  suggesting the pres- 
tance fails in the presence of strains of the ence of a different type of resistance gene, 
pathogen that lack the corresponding Avr which we characterize here. 
genes. Broad-spectrum disease resistance is We genetically mapped RPW8 to a frag- 
therefore desirable, and has been achieved ment of genomic DNA from Ms-0 in cosmid 

35. In general, i t  is advantageous to reduce the size of the 
search space, because a smaller n leads to a larger 
accuracy of grammar acquisition. The situation is 
more complex, however. Consider two universal 
grammars U, and U, with n, > n,. Suppose U, is 
resident and U, is an invading mutant. If n, exceeds 
the coherence threshold, then U, will always out- 
compete U,. If n, is below the coherence threshold, 
then U, can only invade if the specific grammar 
adopted by the population of U, speakers is also 
part of U,; otherwise U, can resist invasion by U,. 
The selective difference between U, and U, is 
small if both n, and n, values are either well above 
or well below the coherence threshold. Hence, 
selection is strongest close to the coherence 
threshold (if n, ;- n,). 

36. 	This problem has been solved before, in a different 
context. How many words, N, can be stably main- 
tained in a population if each child hears b words 
during its language acquisition period and has a 
probability, p, to memorize a new word after one 
encounter? The answer is N < bp [M. A. Nowak, J. B. 
Plotkin. V. A. A. Jansen. Nature 404, 495 (2000)l. 

37. The implicit assumption here is, of course, that the 
rule-based grammars can generate at least these N 
sentence types. In a principles and parameters frame- 

through the use of recessive mutations (3); a 
challenge is to develop broad-spectrum resis- 
tance with dominant R genes (4). More than 
20 of the R genes that confer specific resis- 
tance have been characterized and they form 
five classes of protein with differing combi- 
nations of five conserved structural motifs. 
With the exception of Hml, a toxin reduc- 
tase, and Pto, a protein kinase, the character- 
ized R proteins contain a leucine-rich repeat 
(LRR) motif believed to specify recognition 
(1, 5, 6 ) .All of the characterized A. thaliana 
R genes encode proteins with motifs for a 
nucleotide-binding site (NBS) and an LRR, 
and similar R genes have been isolated from 

-

School of Biological Sciences. University of East An- 
glia, Now ich  NR4 7TJ, UK. 

*To whom correspondence should be addressed. E- 
mail: j.g.turner@uea.ac.uk 

B6 (Fig. IA) (10), and confirmed that Col-0 
plants containing the B6 transgene (T-B6) 
were resistant to E. cichoracearum UCSCl 
(Fig. 2A) (10). The B6 DNA sequence ( I I )  
revealed three open reading frames (ORFs) 
(Fig. 1 A) encoding a serinelthreonine protein 
kinase 2 (SPK-2) (GenBank accession num- 
ber S56718) and two uncharacterized genes. 
which we named MSCl and MSC2. Sub- 
clones of B6 in a plant transformation vec- 
tor were introduced into Col-0 plants by 
Agrobacterium-mediated transformation (1 1. 
12), and those that contained either MSCl or 
MSC2, or both of these ORFs, conferred re- 
sistance to E. cichoracearum UCSCl (Fig. 
IA). This indicated that RP W8 comprises two 
independently acting genes, MSCI and 
MSC2, which we therefore renamed RPW8.1 
and RPW8.2, respectively. Ms-0 cDNAs for 
R PW8.1 and RP W8.2 (13) were introduced 
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