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along shortest paths confined to the manifold of 
observed inputs. Here. we take a different ap- - 

Reduction by proach, called locally linear embedding (LLE), 
that eliminates the need to estimate painvise 
distances between widely separated data points. 

Locally Linear Embedding Unlike previous methods, LLE recovers global 
nonlinear structure from locally linear fits. 

Sam T. Roweis' and Lawrence K. Saul2 The LLE algorithm, summarized in Fig. 
2, is based on simple geometric intuitions. 

Many areas of science depend on exploratory data analysis and visualization. Suppose _the data consist of N real-valued 
The need t o  analyze large amounts of multivariate data raises the fundamental vectors Xi, each of dimensionality D, sam- 
problem of dimensionality reduction: how t o  discover compact representations pled from some underlying manifold. Pro- 
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an vided there is sufficient data (such that the 
unsupervised learning algorithm that computes low-dimensional, neighbor- manifold is well-sampled), we expect each 
hood-preserving embeddings of high-dimensional inputs. Unlike clustering data point and its neighbors to lie on or 
methods for local dimensionality reduction, LLE maps its inputs into a single close to a locally linear patch of the mani- 
global coordinate system of lower dimensionality, and its optimizations do not fold. We characterize the local geometry of 
involve local minima. By exploiting the local symmetries of linear reconstruc- these patches by linear coefficients that 
tions, LLE is able t o  learn the global structure of nonlinear manifolds, such as reconstruct each data point from its neigh- 
those generated by images of faces or documents of text. bors. Reconstruction errors are measured 

by the cost function 
How do we judge similarity? Our mental coordinates as observed modes of variability. 
representations of the world are formed by Previous approaches to this problem, based on E ( W )  = 2 - s j W i j 4 1 2  ( I )  
processing large numbers of sensory in- multidimensional scaling (MDS) (2), have I 

puts-including, for example, the pixel in- computed embeddings that attempt to preserve which adds up the squared distances between 
tensities of images, the power spectra of painvise distances [or generalized disparities all the data points and their reconstructions. The 
sounds, and the joint angles of articulated (3)] between data points; these distances are weights Wij summarize the contribution of the 
bodies. While complex stimuli of this form can measured along straight lines or, in more so- jth data point to the ith reconstruction. To com- 
be represented by points in a high-dimensional phisticated usages of MDS such as Isomap (4), pute the weights Wij, we minimize the cost 
vector space, they typically have a much more 
compact description. Coherent structure in the 
world leads to strong correlations between in- A 
puts (such as between neighboring pixels in 
images), generating observations that lie on or 
close to a smooth low-dimensional manifold. 

& I .  
To compare and classify such observations-in 
effect, to reason about the world-depends 
crucially on modeling the nonlinear geometty 
of these low-dimensional manifolds. 

Scientists interested in exploratory analysis 
or visualization of multivariate data (I) face a 
similar problem in dimensionality reduction. 
The as in Fig. " Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (70) for three-dimensional 
mapping high-dimensi0na1 inputs into a low- data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must 
dimensional ''description" space with as many discover the global internal coordinates of the manifold without signals that explicitly indicate how 

the data should be embedded in two dimensions. The color coding illustrates the neighborhood- 
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a 

'Catsby Computational Neuroscience Unit. Universi- single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or 
tY College London, 17 Queen Square. hndon  WCfN classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the 
3AR, UK. Lab--Research, 180 Park Avenue, underlying structure of the manifold. Note that mixture models for local dimensionality reduction 
Florham Park, NJ 07932, USA. (29), which cluster the data and perform PCA within each cluster, do not address the problem 
E-mail: roweis@gatsby.ucl.acuk (s.T.R.); Isaul@research. considered here: namely, how to map high-dimensional data into a single global coordinate system 
att.com (LKS.) of lower dimensionality. 
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fimction subject tp two constraints: first, that not belong to the set of neighbors of 4; 
each data point 4 is reconstructed only from second, that the rows of the weight matrix 
its neighbors (5), enforcing Fj = 0 i f 3  does sum to one: C j F j  = 1. The optimal weights 

Fig. 2. Steps of locally lin- o 
ear embedding: (1) Assign 

o 0  @ wect m~ghbom 

neighbors to each data O e.2. --. -. 
point XI (for example by • o -. --.. 
using the K nearest neigh- 

xb . bors). (2) Compute the 
weights W, that bzst lin- o 
early reconstruct X,  from 

00 . its neighbors, solving the 
constrained least-squares o o 
problem in Eq. 1. (3) Com- 
pute the low-dimen_sional 
embedd~ng vectors Y, best Reconstruct with 
reconstructed by W,j. m~ni- linear weights 
mizing Eq. 2 by find~ng the 
smallest eigenmodes of 

0 

0 

the sparse symmetric ma- 
trix in Eq. 3. Although the O 0  
weights W, and vectors Y, 
are compu{ed by methods 
in linear algebra, the con- .- 
straint that points are only 
reconstructed from neigh- ..-- 
bors can result in highly 
nonlinear embeddings. 

Mep to embedded coordlnatee 

Fig. 3. Images of faces (77) mapped into the embedding space described by the first two 
coordinates of LLE. Representative faces are shown next to circled points in different parts of the 
space. The bottom images correspond to points along the top-right path (linked by solid line), 
illustrating one particular mode of variability in pose and expression. 

Wij subject to these constraints (6) are found 
by solving a least-squares problem (7).  

The constrained weights that minimize 
these reconstruction errors obey an important 
symmetry: for any particular data point, they 
are invariant to rotations, rescalings, and 
translations of that data point and its neigh- 
bors. By symmetry, it follows that the recon- 
struction weights characterize intrinsic geo- 
metric properties of each neighborhood, as 
opposed to properties that depend on a par- 
ticular frame of reference (8). Note that the 
invariance to translations is specifically en- 
forced by the sum-to-one constraint on the 
rows of the weight matrix. 

Suppose the data lie on or near a smooth 
nonlinear manifold of lower dimensionality d 
<< D. To a good approximation then, there 
exists a linear mapping-consisting of a 
translation, rotation, and resealing-that 
maps the high-dimensional coordinates of 
each neighborhood to global internal coordi- 
nates on the manifold. By design, the recon- 
struction weights Wij reflect intrinsic geomet- 
ric properties of the data that are invariant to 
exactly such transformations. We therefore 
expect their characterization of local geome- 
try in the original data space to be equally 
valid for local patches on the manifold. In 
particular, the same weights Wij that recon- 
struct the ith data point in D dimensions 
should also reconstruct its embedded mani- 
fold coordinates in d dimensions. 

LLE constructs a neighborhood-preserving 
mapping based on the above idea. In the final 
step of the algorithm, each high-dimensional 
observation Xi is mapped to a low-dimensional 
vector < representing global internal coordi- 
nates on the manifold. This is_done by choosing 
d-dimensional coordinates < to minimize the 
embedding cost function 

This cost function, like the previous one, is 
based on locally linear reconstruction errors, 
but here we fix the weights Wij while opti- 
mizing the coordinates Yi. The embedding 
cost in Eg. 2 defines a quadratic form in the 
vectors Yi. Subject to constraints that make 
the problem well-posed, it can be minimized 
by solving a sparse N X N eigenvalue prob- 
lem (9), whose bottom d nonzero eigenvec- 
tors provide an ordered set of orthogonal 
coordinates centered on the origin. 

Implementation of the algorithm is 
straightforward. In our 'experiments, data 
points were reconstructed from their K near- 
est neighbors, as measured by Euclidean dis- 
tance or normalized dot products. For such 
implementations of LLE, the algorithm has 
only one free parameter: the number of 
neighbors, K. Once neighbors are chose?, the 
optimal weights Wij and coordinates Yi are 
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computed by standard methods in linear al-
gebra. The algorithm involves a single pass 
through the three steps in Fig. 2 and finds 
global minima of the reconstruction and em-
bedding costs in Eqs. 1 and 2. 

In addition to the example in Fig. 1, for 
which the true manifold structure was known 
( l o ) ,we also applied LLE to images of faces 
(11 )  and vectors of word-document counts 
(12).  Two-dimensional embeddings of faces 
and words are shown in Figs. 3 and 4. Note 
how the coordinates of these embedding 
spaces are related to meaningful attributes, 
such as the pose and expression of human 
faces and the semantic associations of words. 

Many popular learning algorithms for 
nonlinear dimensionality reduction do not 
share the favorable properties of LLE. Itera-
tive hill-climbing methods for autoencoder 
neural networks (13, 14 ) ,  self-organizing 
maps (15) ,and latent variable models ( 16) do 
not have the same guarantees of global opti-
mality or convergence; they also tend to in-
volve many more free parameters, such as 
learning rates, convergence criteria, and ar-

Fig. 4. Arranging words in a 
continuous semantic space. 
Each word was initially repre-
sented by a high-dimensional 
vector that counted the 
number of times it appeared 
in different encyclopedia ar-
ticles. LLE was applied to  
these word-document count 
vectors (72), resulting in an 
embedding location for each 
word. Shown are words from 
two different bounded re-
gions (A) and (B)of the em-
bedding space discovered by 
LLE. Each panel shows a two-
dimensional projection onto 
the third and fourth coordi-
nates of LLE; in these two 
dimensions, the regions (A) 
and (B) are highly over-
lapped. The inset in (A) 
shows a three-dimensional 
projection onto the third, 
fourth, and fifth coordinates, 
revealing an extra dimension 
along which regions (A) and 
(B) are more separated. 
ihlbrds that lie in th'e inter-
section of both regions are 
capitalized. Note how LLE co-
locates words with similar 
contexts in this continuous 
semantic space. 

chitectural specifications. Finally, whereas 
other nonlinear methods rely on deterministic 
annealing schemes ( 17) to avoid local mini-
ma, the optimizations of LLE are especially 
tractable. 

LLE scales well with the intrinsic mani-
fold dimensionality. d. and does not require a 
discretized gridding of the embedding space. 
As more dimensions are added to the embed-
ding space, the existing ones do not change, 
so that LLE does not have to be rerun to 
compute higher dimensional embeddings. 
Unlike methods such as principal curves and 
surfaces (18)  or additive component models 
(19) ,  LLE is not limited in practice to mani-
folds of extremely low dimensionality or 
codimensionality. Also, the intrinsic value of 
d can itself be estimated by analyzing a re-
ciprocal cost function, in which reconstruc-
tion weights derived from the embeddhg 
vectors Y, are applied to the data points X,. 

LLE illustrates a general principle of mani-
fold learning, elucidated by Martinetz and 
Schulten (20) and Tenenbaum ( 4 ) ,  that over-
lapping local neighborhoods-collectively an-
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alyzed-can provide information about global 
geometry. Many virtues of LLE are shared by 
Tenenbaum's algorithm, Isomap, which has 
been successfully applied to similar problems in 
nonlinear dimensionality reduction. Isomap's 
embeddings, however, are optimized to pre-
serve geodesic distances between general pairs 
of data points, which can only be estimated by 
computing shortest paths through large sublat-
tices of data. LLE takes a different approach, 
analyzing local symmetries, linear coefficients, 
and reconstruction errors instead of global con-
straints, painvise distances, and stress func-
tions. It thus avoids the need to solve large 
dynamic programming problems, and it also 
tends to accumulate very sparse matrices, 
whose structure can be exploited for savings in 
time and space. 

LLE is likely to be even more useful in 
combination with other methods in data anal-
ysis and statistical learning. For example, a 
parametric mapping between the observation 
and embedding spaces could be learned by 
supervised neural networks (21 )whose target 
values are generated by LLE. LLE can also 
be generalized to harder settings, such as the 
case of disjoint data manifolds (22) ,and spe-
cialized to simpler ones, such as the case of 
time-ordered observations (23) .  

Perhaps the greatest potential lies in ap-
plying LLE to diverse problems beyond those 
considered here. Given the broad appeal of 
traditional methods, such as PCA and MDS, 
the algorithm should find widespread use in 
many areas of science. 
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