during the response to specific changes in the extracellular environment. All of the known targets for these two activators were confirmed, and functional modules were discovered that are regulated directly by these factors.

Expression analysis with DNA microarrays allows investigators to identify changes in mRNA levels in living cells, but the inability to distinguish direct from indirect effects limits the interpretation of the data in terms of the genes that are controlled by specific regulatory factors. Genome-wide location analysis provides information on the binding sites at which proteins reside through the genome under various conditions in vivo, and will prove to be a powerful tool for further discovery of global regulatory networks.

References and Notes

- 1. M. Ptashne, A. Gann, Nature 386, 569 (1997).
- 2. T. I. Lee, R. A. Young, Annu. Rev. Genet. 34, 77 (2000).
- S. Malik, R. G. Roeder, Trends Biochem. Sci. 25, 277 (2000).
- T. J. Kelly, G. W. Brown, Annu. Rev. Biochem. 69, 829 (2000).

- A. Dutta, S. P. Bell, Annu. Rev. Cell Dev. Biol. 13, 293 (1997).
- Complete experimental protocols and other information are available at *Science* Online at www. sciencemag.org/cgi/content/full/290/5500/2309/DC1 and on the author's Web site at http://web.wi.mit.edu/ young/location.
- 7. V. Orlando, Trends Biochem. Sci. 25, 99 (2000).
- 8. C. J. Roberts et al., Science 287, 873 (2000).
- M. Johnston, M. Carlson, in *The Molecular and Cellular Biology of the Yeast* Saccharomyces, E. W. Jones, J. R. Pringle, J. R. Broach, Eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1992), vol. 2, pp. 193–281.
- 10. D. I. Chasman et al., Genes Dev. 4, 503 (1990).
- R. Marmorstein, M. Carey, M. Ptashne, S. C. Harrison, *Nature* **356**, 408 (1992).
- 12. M. C. Schmidt et al., Mol. Cell. Biol. **19**, 4561 (1999).
- 13. D. Huang *et al.*, *Mol. Cell. Biol.* **18**, 3289 (1998).
- B. Jundi, E. Weber, M. R. Chevallier, Eur. J. Biochem. 171, 417 (1988).
- G. F. Sprague Jr., J. Thorner, in *The Molecular and Cellular Biology of the Yeast* Saccharomyces, E. W. Jones, J. R. Pringle, J. R. Broach, Eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1992), vol. 2, pp. 657–744.
- 16. H. D. Madhani, G. R. Fink, Trends Genet. 14, 151 (1998).
- 17. J. B. Konopka, Mol. Cell. Biol. 13, 6876 (1993).
- J. L. Brown, M. Jaquenoud, M. P. Gulli, J. Chant, M. Peter, *Genes Dev.* **11**, 2972 (1997).

Inhibition of Eukaryotic DNA Replication by Geminin Binding to Cdt1

James A. Wohlschlegel,¹ Brian T. Dwyer,¹ Suman K. Dhar,¹ Christin Cvetic,² Johannes C. Walter,² Anindya Dutta^{1*}

In all eukaryotic organisms, inappropriate firing of replication origins during the G_2 phase of the cell cycle is suppressed by cyclin-dependent kinases. Multicellular eukaryotes contain a second putative inhibitor of re-replication called geminin. Geminin is believed to block binding of the mini-chromosome maintenance (MCM) complex to origins of replication, but the mechanism of this inhibition is unclear. Here we show that geminin interacts tightly with Cdt1, a recently identified replication initiation factor necessary for MCM loading. The inhibition of DNA replication by geminin that is observed in cell-free DNA replication extracts is reversed by the addition of excess Cdt1. In the normal cell cycle, Cdt1 is present only in G_1 and S, whereas geminin is present in S and G_2 phases of the cell cycle. Together, these results suggest that geminin inhibits inappropriate origin firing by targeting Cdt1.

Eukaryotic cells maintain a tight control on the initiation of DNA replication to ensure that chromosome duplication in S phase and chromosome segregation in M phase strictly alternate with each other so that daughter cells do not receive too many or too few chromosomes. Fusion of cells in the G_2 phase of the cell cycle to those in S phase revealed that the G_2 nuclei were unable to replicate their DNA, although

conditions in the heterokaryon were permissive for replication in the S phase nuclei (1). This observation led to the hypothesis that G₂ nuclei lack a factor essential for replication initiation and/or possess a negative factor that prevents replication initiation. For the initiation of DNA replication in eukaryotes, the origin recognition complex (ORC) binds to initiator elements and recruits the CDC6 and Cdt1 proteins to chromatin in the G_1 phase of the cell cycle. The latter, in turn, are required to recruit the MCM complex to form the pre-replication complex (pre-RC). After origin firing at the beginning of S phase, the pre-RC is dissociated and is not re-assembled until the cell passes through mitosis into the G₁ phase of the next cell-cycle. As factors essential for replication initiation were

- G. C. Chen, Y. J. Kim, C. S. Chan, *Genes Dev.* 11, 2958 (1997).
- S. Erdman, L. Lin, M. Malczynski, M. Snyder, J. Cell Biol. 140, 461 (1998).
- A. Roy, C. F. Lu, D. L. Marykwas, P. N. Lipke, J. Kurjan, Mol. Cell. Biol. 11, 4196 (1991).
- J. Trueheart, J. D. Boeke, G. R. Fink, Mol. Cell. Biol. 7, 2316 (1987).
- G. McCaffrey, F. J. Clay, K. Kelsay, G. F. Sprague Jr., Mol. Cell. Biol. 7, 2680 (1987).
- L. Marsh, M. D. Rose, in *The Molecular and Cellular Biology of the Yeast* Saccharomyces, J. R. Pringle, J. R. Broach, E. W. Jones, Eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997), vol. 3, pp. 827–888.
- 25. F. Chang, I. Herskowitz, Cell 63, 999 (1990).
- 26. H. Fujimura, Curr. Genet. 18, 395 (1990).
- 27. P. T. Spellman et al., Mol. Biol. Cell 9, 3273 (1998).
- 28. K. A. Olson et al., Mol. Cell. Biol. 20, 4199 (2000).
- 29. We thank P. Cosma, K. Nasmyth, V. Myer, F. Holstege, and F. Lewitter for reagents, protocols, and helpful discussions. Supported by funds from Coming, Inc., NIH (R.A.Y. and S.P.B.), Helen Hay Whitney Foundation (B.R.), National Cancer Institute of Canada (F.R.), NSF (J.J.W.), Burroughs-Wellcome Fund (O.A.), Howard Hughes Medical Institute (E.G.J. and S.P.B.), European Molecular Biology Organization (I.S.), and the Human Frontier Science Program (J.Z.).

18 September 2000; accepted 16 November 2000

discovered, it became clear that some of them become limiting in G_2 nuclei (2, 3). In particular, CDC6 is exported out of the nucleus (or proteolysed in yeast) as S phase proceeds, while the MCM proteins are phosphorylated and become dissociated from the chromatin (or exported out of the nucleus in yeast). In addition, the elevated activity of cyclin-dependent kinase (cdk) in the G_2 -M phase of the cell cycle blocks re-replication by preventing assembly of pre-RC even when initiation factors such as CDC6 are artificially expressed or stabilized in G₂ nuclei (4-6). Therefore, the absence of initiation factors and the presence of negative factors prevent a second round of origin firing until cells pass through mitosis.

Geminin was identified in a screen for proteins that are degraded in mitotic extracts from Xenopus eggs and was shown to inhibit DNA replication by preventing the loading of MCM complex on chromatin (7). The target of geminin in this inhibitory reaction was unclear, but its expression in S and G₂ led to the suggestion that it provides an additional mechanism to prevent re-replication in the normal cell cycle. To identify the target of geminin, we raised antibodies to bacterially expressed His6-geminin (Fig. 1A) (8). Immunoblotting of extracts from 293T cells with this antibody recognized the 33-kD geminin protein in cell extracts (Fig. 1A). Immunoprecipitation of ³⁵S-methionine labeled cell extracts indicated that the 33-kD geminin protein co-immunoprecipitated with cellular proteins of 65 and 130 kD (Fig. 1B) (9). Re-immunoprecipitation with antibody to geminin under denaturing conditions precipitated geminin but not the 65- and 130-kD polypeptides (Fig. 1B). These results suggest that the 65- and 130-kD polypeptides were present in the native anti-geminin immunopre-

¹Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA. ²Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.

^{*}To whom correspondence should be addressed. Email: aduttta@rics.bwh.harvard.edu

gene or immunodepletion of the protein from

cell extracts results in failure to recruit the

MCM complex on chromatin despite the load-

ing of ORC and CDC6. Because pre-RC for-

mation was blocked at the step of MCM load-

ing either by depletion of Cdt1 or by addition of

в

97

66

45.

31-

Geminin

PI I

Boil /

Re-IF

p130

p65

Geminin

Α

66.

45-

31-

PI I

cipitate because of their association with geminin and that these polypeptides could be the target of geminin action.

A new replication initiation factor, Cdt1 or double-parked, was recently identified as being essential for DNA replication in *Schizosaccharomyces pombe*, *Xenopus laevis*, and *Drosoph*-

Fig. 1. Human geminin is associated with proteins of 65 and 130 kD. (**A**) Immunoblotting of cell lysates with antibody to geminin (I) recognizes a 33-kD protein while the preimmune sera does not (PI). (**B**) Immunoprecipitation of ³⁵Smethionine labeled cell extracts with antibody to geminin and its corresponding preimmune sera followed by fluorography of the immunoprecipitate. The anti-geminin immunoprecipitate was boiled in 1% SDS, diluted 10-fold, and reimmunoprecipitated with antibodies to geminin to show that the antibody recognized only the 33-kD geminin protein under denaturing conditions.

geminin, we hypothesized that geminin interacts with and inhibits Cdt1. However, the published sequence of human Cdt1 predicted a protein of about 45 kD (12) that was not present in the geminin immunoprecipitate. Rescreening the expressed sequence tag (EST) database for homology to the Xenopus Cdt1 gene identified a cDNA clone for human Cdt1 that was extended at the NH₂-terminus by 145 amino acids and coded for a protein of about 65 kD (13). The GenBank accession number for this sequence is AF321125. With the new addition, the human Cdt1 protein is similar to Xenopus Cdt1 all the way to the NH2-terminus (Fig. 2A) (46% identity and 60% similarity). An antibody raised against bacterially expressed protein containing amino acids 238 to 546 of Cdt1 recognized a single protein with a molecular mass of 65 kD upon immunoblotting of 293T cell extracts (Fig. 2B) (14). The size of the protein corresponds to the predicted size of Cdt1 with the

Fig. 2. Human Cdt1 protein is a 65-kD protein that coimmunoprecipitates with geminin. (A) Alignment of the complete human Cdt1 sequence with that of Xenopus, Drosophila, and S. pombe Cdt1 homologs. Human Cdt1 from amino acid residues 145 to 546 has been published (12). (B) Antibody to human Cdt1 (I) recognizes a 65-kD protein upon immunoblotting of 293T cell lysates whereas the preimmune control (PI) does not. (C) Immunoprecipitation of ³⁵S-methionine labeled cell extracts with antibody to Cdt1 (I) and the corresponding preimmune sera (PI) followed by fluorography of the immunoprecipitate. (D) Immunoprecipitation of 293T cell lysates with either antibodies to geminin or Cdt1 followed by immunoblotting with antibodies to Cdt1 and geminin. (E) GST-geminin specifically associates with human and Xenopus Cdt1 but not human MCM3. Cdt1 or MCM proteins were produced by in vitro transcription and translation and were tested for their ability to bind either GST or GST-geminin in a pull-down assay on glutathione agarose beads. For each set, the input lane contains 5% of the amount of

labeled protein incubated with GST or GST-geminin. The labeled proteins were visualized by SDS-PAGE and fluorography.

tiate replication through the addition of a nucle-

oplasmic extract (NPE). Because replication in

this system typically uses only Xenopus repli-

cation factors, it was first necessary to show

that human geminin and human Cdt1 could

function in this system. In Fig. 3A, we show

that bacterially expressed GST-geminin but not

GST alone interacts with XCdt1 from egg cy-

tosol. In Fig. 3B, we show that human GST-

Cdt1 is capable of associating with sperm chro-

matin when added to Xenopus extracts (16). To

examine geminin's ability to inhibit DNA rep-

lication through Cdt1, sperm chromatin was

incubated with cytosolic egg extract that was

supplemented with geminin (8), Cdt1 (17), or

both, and the proteins that associated with the

chromatin were examined by immunoblotting.

As reported previously for Xenopus geminin

(7), recombinant human geminin disrupted pre-

RC assembly by inhibiting the loading of

XMCM4 onto chromatin without affecting the

loading of XORC2 (Fig. 3C, lane 4) (16). Strik-

ingly, when recombinant human Cdt1 was add-

ed with the geminin, the binding of MCM to

chromatin was restored (Fig. 3C, lane 5). To

ask whether addition of human Cdt1 rescues

formation of functional pre-RCs, the pre-RCs

assembled in Fig. 3C were mixed with nucleo-

plasmic extract, and replication was measured.

As expected from previous results (7), pre-RCs

assembled in the presence of geminin did not

support DNA replication (Fig. 3D, lanes 3 and

7) (16). However, when human Cdt1 was also

present during pre-RC formation, replication

was restored (Fig. 3D, lanes 4 and 8). There-

fore, the inhibition of pre-RC formation and

DNA replication by geminin is counteracted by

 NH_2 -terminal extension reported here. Immunoprecipitation of ³⁵S-methionine–labeled cell extracts revealed that the 65-kD Cdt1 protein was coimmunoprecipitated with a 33-kD cellular protein (Fig. 2C) (9).

The presence of a 33-kD polypeptide in the Cdt1 immunoprecipitate and a 65-kD polypeptide in the geminin immunoprecipitate led us to test whether geminin (33 kD) and Cdt1 (65 kD) associate with each other in extracts of asynchronously growing cells. Immunoprecipitation of cellular proteins with antibody to geminin followed by immunoblotting of the precipitate with antibody to Cdt1 revealed that Cdt1 was present in the geminin immunoprecipitate (Fig. 2D, lane 3). Conversely, immunoprecipitation of cell extracts with antibody to Cdt1 and immunoblotting the precipitate with antibody to geminin revealed that geminin was present in the Cdt1 immunoprecipitate (Fig. 2D, lane 5). The ratio of geminin to Cdt1 in the Cdt1 immunoprecipitate (lane 5) is similar to their ratio in the input cell extract (lane 1), arguing for a very efficient interaction between geminin and Cdt1 in extracts of 293T cells. The association of Cdt1 and geminin could also be reproduced in vitro. Glutathione S-transferase (GST)-geminin purified from bacteria specifically associated with full-length human and Xenopus Cdt1 produced in rabbit reticulocyte lysates by in vitro transcription and translation but not to similarly produced human MCM3 (Fig. 2E) (15).

Because the geminin-Cdt1 interaction could be re-created in vitro, we turned to an in vitro system of DNA replication to test whether geminin inhibits replication initiation by targeting Cdt1 (16). In this system, sperm chromatin is incubated in cytosolic egg extract to assemble

Fig. 3. Cdt1 reverses inhibition of DNA replication by geminin. (A) GST-geminin interacts with XCdt1 from Xenopus egg extracts. Xenopus egg extracts were incubated with either GST (lane 2) or GST-geminin (lane 3) in a pull-down assay on glutathione agarose beads and were immunoblotted with antibodies to XCdt1. Lane 1 shows XCdt1 in the Xenopus egg extract. (B) Human GST-Cdt1 associates with sperm chromatin in Xenopus extracts. After incubation of GST-Cdt1 with Xen-

opus egg extracts with (lane 2) or without (lane 3) sperm chromatin, the chromatin was isolated and immunoblotted with antibodies to Cdt1. Lane 1 shows GST-Cdt1 in the input. (C) After incubation in *Xenopus* egg extracts, the chromatin was isolated and recruitment of ORC and MCM to the chromatin was visualized by immunoblotting with the indicated antibodies. The replication reactions contained the following additions: buffer (lane 1), GST-Cdt1 (400 nM, lane 3), His6-geminin (100 nM, lane 4) and His6-geminin (100 nM) + GST-Cdt1 (400 nM) (lane 5). No sperm chromatin was added to the negative control reaction in lane 2. (D) DNA replication in *Xenopus* egg extracts with addition of buffer (mock, lanes 1 and 5), GST-Cdt1 (400 nM, lanes 2 and 6), His6-geminin (100 nM, lanes 3 and 7), and His6-geminin (100 nM) + GST-Cdt1 (400 nM) (lanes 4 and 8). Products of the replication reaction were separated on a 0.8% agarose gel and were visualized by autoradiography. Lanes 1 through 4 and 5 through 8 correspond to the replication reaction 30 and 60 min after addition of NPE, respectively.

the presence of excess Cdt1. Together with the physical interaction of geminin and Cdt1 (Figs. 2 and 3A), these results strongly suggest that geminin blocks DNA replication by targeting Cdt1.

If geminin targets Cdt1 to inhibit re-replication, it is expected to be expressed soon after Cdt1 function is executed in the cell cycle. Pre-RCs are assembled in G₁ and are dissociated soon after origin firing in S phase, providing a finite window of time during which Cdt1 has to be active (18, 19). HeLa cells were released from a mitotic cell cycle block and were harvested at 3-hour intervals as they progressed synchronously through G1 and S, and extracts were blotted for cyclin A, Orc2, Cdt1, and geminin (Fig. 4) (20). The time of expression of cyclin A suggests that S phase began about 12 to 15 hours after release from the nocodazole block. Cdt1 protein was detected in G₁ and early S, consistent with its role in pre-RC formation, whereas its expression dropped off in G₂. The absence of Cdt1 in G₂ nuclei is, therefore, another mechanism by which the cell prevents re-replication. Conversely, geminin appears in S phase and persists through G₂ into mitosis, disappearing as cells enter G₁. Cdt1 and geminin are coexpressed in S phase at about the time when geminin can inhibit Cdt1 function without impairing the normal replication initiation process. The excess of geminin in late S and G₂ suggests that even if Cdt1 were expressed in G₂ nuclei, geminin would act as a negative factor to prevent the reinitiation of DNA replication. Therefore, the pattern of expression of geminin in the cell cycle is consistent with it being a second negative factor in G_2 that prevents re-replication by targeting Cdt1.

In summary, our results identify Cdt1 as the target of geminin. The results also indicate that Cdt1 and geminin are separately regulated such that both the absence of Cdt1 in G_2 and the appearance of geminin in S help prevent rereplication of the chromosomes. Clearly, evo-

0 3 6 9 12 15 18 21 24 Time (hours)

lution has selected for multiple parallel pathways to ensure that a replicated chromosome does not erroneously reinitiate replication until after chromosome segregation is completed in mitosis. Cdks are believed to prevent replication initiation by phosphorylating CDC6 to target it either for proteolysis (in yeasts) or for nuclear export (in higher eukaryotes) (6, 21-23). In addition, phosphorylation of MCM proteins by cdk is concordant with their dissociation from chromatin (3). However, in response to checkpoint activation, e.g., after DNA damage, cdk activity is repressed to block cell cycle progression until DNA repair is completed (24, 25). The decrease in cdk activity could allow inappropriate pre-RC assembly on already fired origins, particularly because higher eukaryotes do not degrade CDC6 at the G1-S transition. Therefore geminin, a second negative factor for DNA replication in S and G₂, may have evolved in higher eukaryotes to prevent rereplication in the event that cdk activity is lowered during a checkpoint response. It is also interesting that geminin targets a different initiator protein, Cdt1, in comparison to the CDC6 or MCM targeted by cdks. This diversity of targets prevents escape from re-replication control through mutation in the gene of a single target protein.

Note added in proof: While this manuscript was under review, we learned that Tada *et al.* have attained similar results (27).

References and Notes

- 1. P. N. Rao, R. T. Johnson, Nature 225, 159 (1970).
- B. Stillman, Science 274, 1659 (1996).
 A. Dutta, S. P. Bell, Annu. Rev. Cell Dev. Biol. 13, 293 (1997).
- 4. J. Correa-Bordes, P. Nurse, Cell **83**, 1001 (1995).
- J. Hayles, D. Fisher, A. Woollard, P. Nurse, Cell 78, 813 (1994).
- 6. S. Piatti, T. Bohm, J. H. Cocker, J. F. Diffley, K. Nasmyth, *Genes Dev.* **10**, 1516 (1996).
- 7. T. J. McGarry, M. W. Kirschner, Cell 93, 1043 (1998). 8. Full-length human geminin (amino acids 1 to 209) was polymerase chain reaction (PCR) amplified from IMAGE clone #727990 using primers containing a Nde I site in the 5' primer and a Bam HI site in the 3' primer. The PCR product was digested with Nde I and Bam HI and was ligated to pET14b (Novagen, Madison, WI) that had been cut with the same enzymes. This plasmid was transformed into BL21(DE3), and protein expression was induced by adding isopropyl- $\beta\mbox{-}D\mbox{-}thiogalactopyranoside (IPTG) to a final concen$ tration of 1 mM. The cells were lysed by sonication and His6-tagged geminin purified over a nickel-nitrilotriacetic acid (nickel-NTA agarose) column (Qiagen, Valencia, CA) according to the manufacturer's instructions. Fractions containing human geminin were pooled and dialyzed against a buffer composed of 50 mM tris, pH 8.0, 50 mM NaCl, and 10% glycerol. Rabbit antibodies against this protein were generated (Cocalico Biologicals, Reamstown, PA) and reacted to the recombinant His6- geminin.
- 9. For metabolic labeling with ³⁵S-methionine, 293T cells were incubated for 2 hours in media lacking methionine. 293T cells were then incubated for two additional hours in media containing Express ³⁵S Protein Labeling Mix (200 μ Ci) (NEN Biochemicals, Boston, MA). Extracts were prepared by lysing the cells in a NP-40 lysis buffer containing 50 mM tris, pH 8.0, 0.1% Nonidet P-40, 150 mM NaCl, 50 mM NaF, 1 mM Na₃VO₄, 5 mM EDTA, 2 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, pepstatin A (2

 $\mu g/ml$), leupeptin (2 $\mu g/ml$), and aprotinin (5 $\mu g/ml$). Immunoprecipitations were done as described in (26), were washed five times in NP-40 lysis buffer, and were analyzed using SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography.

- 10. D. Maiorano, J. Moreau, M. Mechali, *Nature* **404**, 622 (2000).
- 11. H. Nishitani, Z. Lygerou, T. Nishimoto, P. Nurse, *Nature* **404**, 625 (2000).
- 12. A. J. Whittaker, I. Royzman, T. L. Orr-Weaver, *Genes Dev.* **14**, 1765 (2000).
- 13. Whittaker et al. (12) identified the cDNA clone AF070552 as the human Cdt1 homolog. Due to a frameshift error and incompleteness of the CDNA at the 5' end, the published Cdt1 clone lacks amino acids 1 to 145 of the full-length human Cdt1. Amino acids 1 to 145 of the full-length human Cdt1. Amino acids 1 to 140 of human Cdt1 were discovered by using XCdt1 to identify a murine EST (BE303631) that was homologous to the NH₂ terminus of XCdt1 but missing from the published human Cdt1 sequence. Further database searches using BE303631 as the query sequence identified a human EST, BE018212, which was found after sequencing to contain the entire human Cdt1 sequence.
- 14. The plasmid expressing a fragment of Cdt1 (residues 238-546) was constructed by ligating the Msc I–Not I fragment of Image clone #24767 (AF070552) between the Not I and Bam HI sites of pET28a (Novagen). The protein was then expressed in the bacterial strain BL21(DE3), solubilized in 8M urea, and purified over a nickel-NTA agarose column as described by the manufacturer (Qiagen). Rabbits were immunized with this antigen (Cocalico Biologicals), and the antibody was shown to react specifically to His6-Cdt1 (238-546).
- 15. The plasmid expressing full-length GST-tagged geminin was constructed by PCR amplifying full-length geminin containing a 5' Bam HI site and a 3' Xho I site (restriction sites were contained in the primer) and the cloned into pGEX 5X-3 between the Bam HI and Xho I sites. The fusion protein was then expressed in bacteria and purified according to the manufacturer's instructions (Pharmacia Biotech, Piscataway, NJ). In vitro transcription and translation reactions were performed using the

Promega TNT System (Madison, WI). Pull-down assays on glutathione agarose beads were done as described previously (26).

- J. Walter, L. Sun, J. Newport, *Mol. Cell* **1**, 519 (1998).
 Full-length human Cdt1 was PCR amplified from clone
- BE018212 using PCR primers containing a 5' Eco RI site and a 3' Not I site. This PCR product was cloned into pGEX 5X-1 between Eco RI and Not I and expressed in bacteria. The GST-fusion protein was purified according to the manufacturer's direction (Pharmacia).
- J. F. Diffley, J. H. Cocker, S. J. Dowell, A. Rowley, *Cell* 78, 303 (1994).
- 19. D. A. Natale, C. J. Li, W. H. Sun, M. L. DePamphilis, EMBO J. 19, 2728 (2000).
- 20. HeLa cells were synchronized in mitosis using nocodazole (40 ng/ml) for 24 hours and then were released into drug-free media. Whole cell extracts were prepared every 3 hours until 24 hours after release from the mitotic block. The extracts were then immunoblotted with antibodies to geminin (1:2000), Cdt1 (1:2000), cyclin A (1:2000), or ORC2 (1:2000).
- 21. W. Jiang, N. J. Wells, T. Hunter, *Proc. Natl. Acad. Sci.* U.S.A. **96**, 6193 (1999).
- B. O. Petersen, J. Lukas, C. S. Sorensen, J. Bartek, K. Helin, *EMBO J.* 18, 396 (1999).
- 23. P. Saha et al., Mol. Cell. Biol. 18, 2758 (1998).
- 24. V. Costanzo et al., Mol. Cell. 6, 649 (2000).
- 25. Y. Zeng et al., Nature 395, 507 (1998).
- Y. L. Lin, C. Chen, K. F. Keshav, E. Winchester, A. Dutta, J. Biol. Chem. 271, 17190 (1996).
- S. Tada, A. Li, D. Maiorano, M. Mechali, J. Blow, Nature Cell Biol., in press.
- 28. This work was supported by grant CA60499 to A.D. J.A.W. was supported by an NDSEG predoctoral fellowship. S.K.D. was supported by a U.S. Army postdoctoral fellowship DAMD17-00-1-0166. J.C.W. was supported by a Giovanni Armenise Grant and a Burroughs Wellcome Career Award. We thank M. Mechali for the antibodies to XCdt1 and M. Edwards for the Xenopus extracts.

23 October 2000; accepted 20 November 2000

Distinct Roles for TBP and TBP-Like Factor in Early Embryonic Gene Transcription in *Xenopus*

Gert Jan C. Veenstra, ^{1,2*} Daniel L. Weeks,³ Alan P. Wolffe⁴

The TATA-binding protein (TBP) is believed to function as a key component of the general transcription machinery. We tested the role of TBP during the onset of embryonic transcription by antisense oligonucleotide-mediated turnover of maternal TBP messenger RNA. Embryos without detectable TBP initiated gastrulation but died before completing gastrulation. The expression of many genes transcribed by RNA polymerase II and III was reduced; however, some genes were transcribed with an efficiency identical to that of TBP-containing embryos. Using a similar antisense strategy, we found that the TBP-like factor TLF/TRF2 is essential for development past the mid-blastula stage. Because TBP and a TLF factor play complementary roles in embryonic development, our results indicate that although similar mechanistic roles exist in common, TBP and TLF function differentially to control transcription of specific genes.

The TATA-binding protein (TBP) is often considered an essential component of the general transcription machinery, being involved in transcription by all three eukaryotic RNA polymerases. TBP is essential in yeast, binds to a variety of TATA boxes, and is recruited to TATA-less promoters via protein-protein interactions [reviewed in (1)]. Recently, however, TBP-related factors have been identified in metazoans. *Drosophila* has two such proteins (TRF1 and TRF2). TRF1 plays a role in the transcription of *tudor* and