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Fig. 1. Chromosome 10 multipoint plot. Ro- 
bust multipoint lod scores on chromosome 
10 were calculated for the five LOAD families 
that had an AD proband with extremely high 
plasma AP. The markers that were genotyped 
are shown below the plot. A maximum MLS 
of 3.93 is at 81 cM between D10S1227 and 
D1OS1211. 

report (15, 16). 
The results we report show that plasma 

AP can be used as a quantitative trait for 
identifying novel LOAD loci. This ap-
proach is a powerful complement to other 
methods for identifying risk factors 
for LOAD. It enables the evaluation of 
candidate genes at a mechanistic level and, 
because multiple generations can be ana-
lyzed in extended pedigrees grouped ac-
cording to their phenotypic characteristics, 
the power to detect linkage and to obtain 
precise localization is increased. Thus, by 
analyzing 124 subjects in five families 
identified via a proband with extremely 
high AP42, we obtained highly significant 
linkage that was well localized to chromo- 
some 10 with a 1-lod support interval of -8 
cM. These results fit well with those ob- 
tained in the second stage of the sibling pair 
study that provided our candidate regions 
(17). In that study, published jointly with 
our findings, Myers et al. analyzed 429 
affected sibling pairs in 342 sibships and 
obtained significant linkage to the same 
region of chromosome 10 with a 1-lod 
support interval of -16 cM. Together, 
the results of these two studies, performed 
on nonoverlapping family series, provide 
compelling, mutually confirmatory evi-
dence for a novel LOAD locus on chromo- 
some 10. From our results, it appears that 
this locus increases risk for AD by increas- 
ing AP. Because we have sought linkage to 
the high AP phenotype in only a small 
fraction of the human genome, it is likely 
that additional LOAD loci will be detected 
by this method as we evaluate the remain- 
der of the genome in our collection of 
families. 
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The apolipoprotein E (APOE) gene is the only genetic risk factor that has so far 
been linked t o  risk for late-onset ~lzheimer's disease (LOAD). However, 50 
percent of Alzheimer's disease cases do not  carry an APOE4 allele, suggesting 
that other risk factors must exist. We performed a two-stage genome-wide 
screen in  sibling pairs with LOAD t o  detect other susceptibility loci. Here we 
report evidence for an Alzheimer's disease locus on chromosom~ 10. Our stage 
one multipoint lod score (logarithm of the odds ratio for linkagelno linkage) of 
2.48 (266 sibling pairs) increased t o  3.83 in  stage 2 (429 sibling pairs) close t o  
D10S1225 (79 centimorgans). This locus modifies risk for Alzheimer's disease 
independent of APOE genotype. 

Mutations in three genes encoding P-amyloid produced (2). In contrast, most AD cases 
precursor protein (APP), presenilin 1, and have ages of onset above 65 years and exhibit 
presenilin 2 cause the rare, early-onset auto- no clear pattern of inheritance (late-onset 
soma1 dominant form of Alzheimer's disease Alzheimer's disease or LOAD). The E4 allele 
(AD) (I). These mutations all affect APP of the apolipoprotein E (APOE) gene is the 
metabolism such that more AP42 peptide is only known genetic risk factor for LOAD (3, 

4). However, 50% of LOAD cases cany no 
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the genome (5, 6). Nonpararnetric methods, 
which do not require the mode of inheritance 
to be specified, were used to analyze these 
data in the whole sample and in two sub- 
samples stratified by APOE4 genotype. We 
observed 16 chromosomal regions with a 
multipoint logarithm of the odds ratio for 
linkagelno linkage (lod score) (MLS) 2 1 
(6). Four of the sixteen peaks, including one 
on chromosome 10, met the criteria for "sug- 
gestive" linkage (7). 

For stage 2, markers within the stage 1 
peaks were genotyped in an additional 168 
ASPs (83 newly ascertained in the United 
Kingdom, 80 obtained from the Indiana 
Alzheimer Disease Center National Cell 
Repository, and 5 from the National Insti- 
tute of Mental Health Genetics Initiative) 
(8). On chromosome 10, 15 additional 
markers were genotyped in all 429 ASPs, 
reducing the average interval to 5 cM. 
Two-point analyses were carried out be- 
tween each marker locus and the disease 
with the program SPLINK (9), which was 
also used to estimate marker allele frequen- 
cies for the multipoint analyses. The high- 
est two-point lod scores, 3.10 in stage 1 and 
4.85 in stage 2, were obtained in the whole 
sample with marker D10S1211 (at 82.2 cM 
on the multipoint map). On average, 50% 

of the siblings share alleles at any given 
locus. However, 64% of ASPs share alleles 
for D 10s 12 1 1. Elevated allele sharing and 
positive lod scores were observed in the 
whole sample and in APOE4+ve (pairs 
where both siblings had at least one APOE4 
allele) and APOE4-ve (pairs where neither 
sibling had an APOE4 allele) sibling pairs 
in an extended region around D 10s 12 1 1 
(10). 

Multipoint linkage analyses were carried 
out with the program MAPMAKER/SIBS 
(11) on the whole sample, on pairs where 
both siblings had at least one APOE4 allele, 
and on pairs where neither sibling had an 
APOE4 allele (Fig. 1). These analyses use 
information from adjacent markers to de- 
termine the most likely location of the dis- 
ease susceptibility allele. The stage 1 max- 
imum MLS of 2.48 at 77.6 cM is slightly 
different from that previously reported (6) 
and reflects changes in diagnoses. This lod 
score increased to 3.83 at 79 cM in stage 
2 (between D10S1227 and DlOS1225). 
An MLS of 3.83 would be expected to 
occur by chance 0.01 times per genome 
scan, considering the whole-sample analy- 
sis alone (or -0.05 per genome allowing 
for all three analyses) (12). The stage 2 
analysis of APOE4+ve ASPs gave a max- 
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imum MLS of 2.78 at DlOS1225, whereas 
the APOE4-ve pairs gave a maximum MLS 
of 0.66 at 85.4 cM. However, allele shar- 
ing was similarly elevated (to 59%) in all 
three subgroups, indicating that stratifica- 
tion of the sample by APOE4 did not 
change the proportion of allelic sharing at 
the peak. 

In conclusion, we have confirmed our 
preliminary observation of a region of sug- 
gestive linkage on chromosome 10 (6), pro- 
viding strong evidence for a susceptibility 
locus for LOAD. This locus was robustly 
detected in both stages of our genome 
screen and shows a maximum MLS greater 
than that observed in the same data set on 
chromosome 19 around the APOE locus. 
This suggests that the chromosome 10 lo- 
cus is a major risk factor for LOAD. In- 
deed, we estimate the chromosome 10 lo- 
cus-specific X's (relative risk to siblings) to 
be about equivalent to that for APOE. In the 
accompanying report by Ertekin-Taner et 
al. (13), there is evidence that a quantita- 
tive trait locus for high AP42 levels maps 
to the same chromosomal region. This sug- 
gests that the AD susceptibility allele iden- 
tified in our study increases risk for disease 
by modifying AP42 metabolism. 
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