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Fig. 3. Measured molar 
ratios (H,O:HNO,) of 
PSCs (A), together with 
the total particle vol- 
ume in 1 cm3 of air (B) 
and the altitude of the 
gondola (C) for refer- 
ence. During the first 
ascent, the presence of 
STS particles is sup-
ported by low depolar- 
ization ratios (first and 
second blue areas, Fig. 
2D) and of NAT parti- 
cles by higher ratios 
near 75,500 s UT. Dur-
ing the periods marked 
as gray areas in (B), 
particles were detected 
by the ACMS; counting 

75,000 76,000 77,000 78,000 79.000 80.000 81.000 

25 January 2000, Time UT (s) 

statistics, however, were not sufficient to derive molar ratios. 

The actual period selected for the integration is not very 
critical; for example, integration in a cloud layer for 
100 s did not change the molar ratio beyond the 
uncertainties shown in Fig. 3. The beginning and the end 
of a cloud encounter were always well resolved. 
The total particle volume was calculated from a 
bimodal log-normal fit to the particle size distribu- 
tion measured with the particle counter. STS particles 
(e.g.. centered around 75.100 s UT) resulted in dis- 
tributions of particles with a median diameter of 0.14 
p m  (standard deviation (r = 1.85) and a number 
density of 15 cm-3 and, for the second mode, in 
diameters of 1.08 p m  (u  = 1.55) and number density 
of 0.01 cm-,. NAT particles (e.g., near 79.650 s UT) 
resulted in a median diameter of 0.13 p,m (u  = 1.50) 
and a density of 16 cm-, and in a diameter of 1.52 
p m  (u  = 1.45) and a density of 0.5 cm--,. 
Although no direct HNO, gas phase measurement 
was performed, a mixing ratio of 10 ppb is reasonable 
[S. Spreng, F. Arnold. Ceophys. Res. Lett. 21. 1251 
(1994)l. Departures of 2.5 ppb will change J,,, by 
less than 0.5 K. 
One of us (N.L.) calculated the evaporation times of 
NAT particles assuming a 1 K temperature increase: 
The time for a 50% volume reduction is 2 hours for 
a particle of radius 1.0 pm, and 1 day for a particle of 
radius 5.0 pm. 
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ferent in the north, where low-temperature pen- 
ods are shorter and the vortex is l;ss stable-(29, 
30). The question has been raised as to whether 
NAT articles can form in such an environment. 
altho;gh measurements have shown layers of 
liquid and solid aerosols at cold stratospheric 
temperatures (31-33). Our results confirm that 
NAT particles exist in the atmosphere and are 
present in the north polar stratosphere, near or 
even above their equilibrium temperature. The 
complexity of particle occurrence, phase, and 

in the northem polar region has 
been known for some time (1, 34). Two flights 
of the ACMS have confirmed the ex~stence of 
non-ice PSC particles by measurements of STS 

in low-tem~eraturePSCs in 
1998 (14) and NAT particles at higher temper- 
atures in January 2000. 

References and Notes 
1. World Meteorological Organization (WMO). Scientif- 

ic Assessment of Ozone Depletion: 1998, Report 44 
(Global Ozone Research and Monitoring Project. Ce- 
neva. 1999). 

2. S. Solomon, Rev. Ceophys. 37, 275 (1999). 
3. S. Pawson. B. Naujokat. J. Ceophys. Res 104. 14209 

(1999). 
4. L. R. Poole, M. P. McCormick. Geophys. Res. Lett. 15. 

21 (1988). 
5. L. R. Poole. M. T. Osborn. W. H. Hunt. Ceophys. Res. 

Lett. 15. 867 (1988). 
6. D. Fahey et al.. J. Ceophys. Res. 94. 11299 (1989). 
7. P. j. Crutzen. F. Arnold. Nature 324. 651 (1986). 
8. 	0. B. Toon, P. Hamill. R. P. Turco, j. Pinto, Ceophys. 

Res. Lett. 13. 1284 (1986). 
9. D. R. Hanson. K. Mauersberger, Ceophys. Res. Lett. 

15, 855 (1988). 
10. A. Tabazadeh. R. P. Turco, M. Z. Jacobson.J. Geophys. 

Res. 99, 12897 (1994). 
11. C. Beyerle. R. Neuber, 0. Schrems. F. Wittrock, B. 

Knudsen. Geophys. Res. Lett. 21, 57 (1994). 
12. K. S. Carslaw et al.. Ceophys. Res. Lett. 	21. 2479 

(1994). 
13. L. iraci, A. T. J. Fortin, M. A. Tolbert. J. Ceophys. Res. 

103, 8491 (1998). 
14. J. Schreiner. C. Voigt, K. Mauersberger, F. Arnold, N. 

Larsen. Science 283. 968 (1999). 
15. N. Larsen et dl., I.Ceophys. Res. 105. 1491 (2000). 
16. C Voigt et al.. Ceophys.-~es. Lett.. in press. 
17. J. Schreiner. U. Schild, C. Voigt, 	K. Mauersberger, 

Aerosol Sci. Jechnol. 31, 373 (1999). 
18, 	D, Hofmann, T, Deshler,J, Ceophys, Res, 96, 2897 

(1991). 

19. T. Deshler. S. J. Oltmans, 1. Atmos. Chem. 30, 11 
(1998). 

20. j. M. Rosen. N. T. Kjome.App1. Opt. 30. 1552 (1991). 
21. A. Adriani et dl.. in Proceedings of 	Will Quadrennial 

Ozone ~vm~os ium,  L'Aouila 7996, Atmos~heric< .  

Ozone, R. D. Bojkov. C. isc con ti. Eds. (~d i~ ra f i i a l  for 
Parco Scientific0 e Tecnologico d'Abruzzo. L'Aquila. 
Italy, 1998), vol, 2, pp, 879-882, 

22. 1. Ovarlez. H. Ovarlez. Ceophys. Res. Lett. 21, 13,. . 

1235 (1994). 


23. A. Dhbrack, M. Leutbecher. R. Kivi. E. Kyro. Jellus 
51A. 951 (1999). 

24. The 	mass spectrometer sensitivities for water and 
nitric acid have been calibrated through the introduc- 
tion of known partial pressures of these substances 
into the particle evaporation sphere by means of a 
oressure-related dvnamic exoansion. The mole flux to 
the mass spectrometer can then be related to the 

rate. 
25. The selection of the integration period was guided by 

the measurements of the backscatter sondes and by the 
mass spectrometer signals of H,O and HNO, (Fig. 2). 

Reinterpreting Space, Time 
Lags, and Functional Responses 

in Ecological Models 
Matt J. Keeling,'* Howard B. Wilson,' Steve W. pacala3 

Natural enemy-victim interactions are of major applied importance and of 
fundamental interest t o  ecologists. A key question is what stabilizes these 
interactions, allowing the long-term coexistence of the t w o  species. Three main 
theoretical explanations have been proposed: behavioral responses, time-de- 
pendent factors such as delayed density dependence, and spatial heterogeneity. 
Here, using the powerful moment-closure technique, we show a fundamental 
equivalence between these three elements. Limited movement by organisms is 
a ubiquitous feature of ecological systems, allowing spatial structure t o  de- 
velop; we show that the effects of this can be naturally described in  terms of 
t ime lags or within-generation functional responses. 

Enemy-victim systems incorporate a large cross the inherent instabilities in the dynamics of 
section of ecological interactions, including such interactions, how do the species coexist? 
predator-prey, host-parasitoid, host-parasite, How do density dependence and the behavioral 
and host-pathogen systems. A number of im- responses of the organisms influence the dy- . -

questions about these systems have n a r k s ?  What are the effects of limited move- 
emerged from both theoretical and empirical ment in space, leading to noncomplete mixing? 
work over many decades. For example, given A unifying explanation or approach has re-
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mained elusive, as it would seem that these are 
very distinct questions. 

The theory of natural enemies developed 
under the assumption of homogeneity (I-3), 
which only holds for completely mixed pop-
ulations, in which all the individuals experi-
ence the same environment. Although this 
has enabled the development of simple theo-
ry, real populations are always heterogeneous 
to some degree, and this has long been known 
to have a profound impact on the interactions 
between species (4-8). Even in situations 
where the external environment is uniform, 
modem analysis has shown that heterogene-
ities can be internallygenerated by the effects 
of limited movement and local interactions in 
space (9-12). A second form of heterogene-
ity, generated by stochastic events and indi-
viduality, has been increasingly regarded as 
also having a strong influence on large-scale 
ecological patterns (13, 14). However, be-
cause of the complexitiesinherent in stochas-
tic spatial models, it has been difficult to 
combine these two elements and obtain rig-
orous insights. 

Here we.formulate fully andyhcal models 
for individual-based, stochastic metapopula-
tions of the Nicholson-Bailey and Lotka-Vol-
terra systems for natural enemies. This ap-
proach directly addresses the large population 
fluctuations that are due to discrete individuals 
and local environments, as well as the correla-
tions that develop because of limited movement 
in space. When mixing is complete and all 
individuals disperse to other patches, then the 
organisms experience a uniform environment; 
however, with limited movement some individ-
uals remain in a patch, causing correlations to 
rapidly develop. By assuming that the move-
ment rates between patches are large but that 
complete mixing does not occur, we have 
gained spatial heterogeneity but are still able to 
formulate explicit models. These provide an 
intuitive understanding of how internally gen-
erated heterogeneity affects the dynamics of 
natural-enemy systems. Although our approxi-
mations are only rigorously valid when the 
movement rates are large, simulations have 
shown that the general results extend over a 
very wide range of movement rates and mixing 
levels. 

Our individual-based Lotka-Volterra met-
apopulation model has local patch dynamics 
governed by the standard differential equa-
tions (I, 2), although because the model is 
individual-based, death, reproduction, and 
parasitism are now all stochastic events. In 

'Department of Zoology, University of Cambridge, 
Downing Street, Cambridge CB2 3EJ, UK. "epart-
ment of Biology, Imperial College, Silwood Park, As-
cot, Berkshire SL5 7PY. UK. 3Department of Ecology 
and Evolutionary Biology, Princeton University, 
Princeton, NJ08544-1003, USA. 

*To whom correspondence should be addressed. E-
mail: matt@zoo.cam.ac.uk 

this metapopulation model, the local patches 
are linked by the random movement of indi-
viduals, where M ,  and M p  are the rates at 
which hosts and parasites leave a patch, re-
spectively.Dispersal is assumed to be global, 
so that an individual can disperse to any 
randomly selected patch. By considering the 
ensemble average (denoted by a bar) over a 
large number of patches and over all possible 
stochastic realizations, differential equations 
can be developed for any average quantity. 
The average numbers of hosts and para-
sites P,  per patch at time t are described by 

where r is the basic reproductive rate, P is the 
probability of hosts encountering parasites (the 
contact rate), A is the mean brood size of the 
parasites, and c,is the average covariance be-
tween numbers of hosts and parasites in a patch. 
These equations are exact and are equivalent to 
the standard Lotka-Volterramodel (whichhas a 
single nontrivial, neutrally stable fixed point) 
except there is an additional term for the spatial 
covariance in the system. 

Our other model, a discrete time system, 
can be viewed as either an adaptation of the 
continuous-time Lotka-Volterra equations or 
as a limiting case (where the parasitism func-
tion is linearized) of the Nicholson-Bailey 
model (3). In this system, there is a phase of 
reproduction and parasitism, which is then 
followed by a dispersal phase [as in (12)l; 
here m, and m, give the probability that a 
host or parasite (or parasitoid) leaves a patch 
during the dispersal phase. The equations for 
the change in the average number of hosts 
and parasites are 

where F is the mean fecundity of the host (the 
number of progeny is assumed to be Poisson-
distributed) and a is the probability that a 
parasite will find a given host within a patch. 
Again, these equations are exact, and errors 
only enter through our approximationsfor the 
covarience C,. The model is equivalentto the 
standard, linearized Nicholson-Bailey model 
(which has a single nontrivial but unstable 
fixed point) except that there is the additional 
term for the covariance. 

The results of stochastic simulations of 

both the continuous and discrete time met-
apopulationmodels are shown in Fig. 1.Both 
systems show that limited movement can sta-
bilize the dynamics-i.e., the system tends to 
spend more time closer to the fixed point and 
the persistence time of the populations is 
increased. (However, for some parameter 
choices the system can be destabilized). The 
change in stability comes from the buildup of 
correlations between hosts and natural ene-
mies in the subpopulations. The presence of 
many parasites acts to drive down the number 
of hosts in that subpopulation, producing 
strong negative correlations, whereas the 
movement between patches acts to destroy 
these correlations. In the limit of complete 
mixing (when M ,  = M p  = oo or m, = m, = 

01 . . . . . . . ..A 
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Fig. 1. Time series from the two stochastic 
systems, comparing the dynamics of a well-
mixed (gray line) and a limited-movement 
(black line) model. (A) The individual-based 
Lotka-Volterra metapopulation. The black line 
is a typical simulation for M, = 13 and M, = 
2. The gray line is a simulation at the Poisson 
limit M,, M, +w, which shows greater devi-
ations from the fixed point and is more prone 
to extinction, Interaction parameters are the 
same for both simulations (r = 2, d = 1, P = 
1, and A = 1) and the number of subpopula-
tions is 500. (B) The individual-based Nichol-
son-Bailey metapopulation. The gray line is 
when m, = m, = 1 and the black line is when 
m, = m, = 0.8. To make the effects of de-
creasing movement probabilities more easily 
detectable, we modified the original equations 
so that the system is neutrally stable in the 
complete mixinglimit (m, = m, = 1). This was 
achieved by introducinga carrying capacity for 
the hosts, so that Ht+, = FHt(l - aP,)(I -
HJK). Parameter values are F = 1.5, a = 
0.05, and K = 109, and the number of sub-
populations is one million. 
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l), the correlations disappear, and the dynam- 
ics of the mean numbers of hosts and para- 
sites is the same as for the nonspatial deter- 
ministic case. We seek to explain the change 
in the stability of these two natural-enemy 
systems as movement between patches de- 
creases from this well-understood rapid-mix- 
ing limit. 

Using moment-closure analysis (15-18) 
and treating the average covariance C as a 
separate variable, we find that for the contin- 
uous time model 

exp( - (M" + MP)T) 

x HI-T dT 
Similarly, for the discrete time model 

These are first-order approximations to the 

Fig. 2. Graphs showing the persistence times 
from stochastic simulations of the two sys- 
tems; the shading becomes darker as the per- 
sistence times increase. The movement .terms 
from the two models can be linked by consid- 
ering the probability that an individual in the 
Lotka-Volterra system leaves a patch during 
one unit of time: Prob(leaving) = 1 - 
exp(-M). The two graphs are therefore at 
similar scales. (A) The Nicholson-Bailey met- 
apopulation. Each persistence time is an aver- 
age of five independent simulations, where the 
maximum time is 1000 generations (F  = 1.5, 
a = 0.1) and the number of subpopulations is 
2500. (B) The Lotka-Volterra metapopulation. 
The persistence time is a smoothed average of 
five independent simulations, where the maxi- 
mum time was set at 1000. The number of 
subpopulations is 500 (r = 1, d = 1, P = 1, 
and h = 1). 

average covariance I? and assume that there 
is a large amount of movement between sub- 
populations, so that variances and higher or- 
der cumulants can be approximated by their 
Poisson limits (18). These covariances can be 
viewed in three distinct ways. 

First, the covariance can be interpreted as 
an extra dimension, informing us about the 
spatial arrangement of species. In this role, 
we find that as C is always negative, so hosts 
and parasites are more likely to occupy dis- 
tinct patches than their mean abundances 
'would predict. 

Second, because the covariance in both 
systems is dependent only on the mean 
number of hosts and parasites in the past, 
an alternative approach would be to include 
the covariance as a time delay in the mod- 
els, so that both the present and previous 
means have an impact on the future: the 
system has a "spatial memory." When 
movement between patches is rapid, the 
spatial memory is destroyed very quickly; 
hence, only a first-order time lag is needed. 
However, when the movement is reduced, 
the effects of local interactions take longer 
to diffuse into the population; in the equa- 
tions this corresponds to reduced accuracy 
of our first-order approximations. To obtain 
second-order approximations requires ei- 
ther an extra time lag or an extra set of 
moments (including variances and some 
third-order cumulants). This formulation 
can be compared to work with embedding 
dimensions (19), where it is a general result 
that extra (lagged) information may be used 
to capture the dynamics of a spatial system 
(20). The reformulation given here explic- 
itly creates the required form of the time 
lag and shows that the length and time scale 
of this lagged information, and hence the 
complexity of the dynamics, increase as the 
level of spatial mixing decreases. In this 
system and in many other natural enemy 
models, the time lags obtained take on the 
form of delayed density dependence and, as 
such, provide a useful representation of 
spatial heterogeneity when the number of 
lags needed is small. 

Third, for the discrete time model, be- 
cause the particular map is invertible (except 
when H or P is zero), it is possible to express 
the means one time step ago in terms of the 
current species levels, hence 

This expression for the covariance may be 
substituted into the two difference equations, 
where it acts as a functional response. This 
can be compared to previous host-parasitoid 
models in which a modified functional re- 
sponse has been used to mimic the effects of 
spatial clustering (5, 21). It should be realized 
that, because all maps are not necessarily 
invertible, this step cannot always be accom- 

plished. Here, the correlation term reduces 
the host risk of parasitism and decreases the 
parasite success rate as the number of para- 
sitoids per host increases; it is therefore anal- 
ogous to competition between parasitoids. 

Thus, the spatial structure represented by 
I? (the average covariance in the abundances 
of hosts and parasites) can also be interpreted 
either as a time-lagged density-dependent ef- 
fect or, for the discrete time model, as a more 
complex functional response, which reduces 
the effectiveness of the parasites at high par- 
asite density. 

To first order, the negative correlation is 
found to have a stabilizing effect on the 
dynamics of the discrete time model, al- 
though the effect is never strong enough to 
fully stabilize the fixed point. Numerical sim- 
ulations of the full stochastic system, how- 
ever, indicate that when the movement 
probabilities are lower, higher order effects 
may be sufficient to stabilize the dynamics: 
Figure 2A shows two distinct regimes 
where persistence times are large, which 
correspond to where heterogeneity in host 
or parasite abundances is high (22). For the 
continuous time system, the movement 
rates control both the magnitude and mean 
duration of the time lag, resulting in an 
exponentially decaying lag that has no sta- 
bility effects to first order. However, at 
second order, this Lotka-Volterra system 
can be either stabilized or destabilized, de- 
pending on the relative magnitudes of the 
host and parasite movements. In the sto- 
chastic simulations where the effects of all 
orders are incorporated, the populations 
show the greatest persistence when one of 
the movement rates is small; however, if 
both rates are small, then extinctions be- 
come far more common (Fig. 2B). The 
persistence results of both simulations 
agree well with the stability analysis of the 
moment-closure equations (18), with long 
persistence times corresponding to greater 
stability of the fixed point. 

A growing number of examples of de- 
layed density dependence (DDD) have been 
detected in field populations, most frequently 
in forest insects and small mammals (23-26). 
Numerous mechanisms have been proposed 
to explain these delay effects, with the most 
frequent being trophic interactions. Be- 
cause limited movement is a ubiquitous 
feature of ecological systems, it may prove 
to be important in understanding how den- 
sity dependence operates in such systems. 
The precise effects on stability, however, 
depend on the precise details of the under- 
lying biology (27, 28). 

We believe that the interpretation of spa- 
tial heterogeneity in terms of time lags and 
functional responses is generic, because sim- 
ilar techniques could be applied to any equa- 
tions describing an ecological system. This 
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equivalence should facilitate a more unified 
approach in understanding all natural enemy-
victim interactions. Interpreting spatial heter­
ogeneity in terms of time delays is likely to 
be a powerful tool for understanding many 
complex ecological situations. Not only have 
more statistical tools and more biological in­
tuition been developed to deal with DDD, but 
in general the data needed to study temporal 
lags are far more readily attainable than the 
data needed to study spatial structure. 
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Posttranslational 
N-Myristoylation of BID as a 

Molecular Switch for Targeting 
Mitochondria and Apoptosis 

Jiping Zha,* Solly Weiler,* Kyoung Joon Oh, Michael C. Wei, 
Stanley J. Korsmeyerf 

Many apoptotic molecules relocate subcellularly in cells undergoing apoptosis. 
The pro-apoptotic protein BID underwent posttranslational (rather than classic 
cotranslational) N-myristoylation when cleavage by caspase 8 caused exposure 
of a glycine residue. N-myristoylation enabled the targeting of a complex of p7 
and myristoylated p i 5 fragments of BID to artificial membranes bearing the 
lipid composition of mitochondria, as well as to intact mitochondria. This 
post-proteolytic N-myristoylation serves as an activating switch, enhancing 
BID-induced release of cytochrome c and cell death. 

Localization of proteins to distinct subcellu­
lar compartments, including membranes, is a 
critical event in multiple cellular pathways 
such as apoptosis. Discrete topogenic se­
quence elements within proteins function as 
an address for unidirectional targeting to se­
lect membrane sites (1). Alternatively, lipid 
modification of proteins, including isopren-
ylation, myristoylation, palmitoylation, or 
modification by glycosyl-phosphatidylinosi-
tol, enables targeting and permits stable 
membrane association (2, 3). One drastic cell 
fate decision, apoptosis, follows signal trans­
duction events and results in the redistribu­
tion of proteins, which often initiates their 
effector activity. Phosphorylation, a well-
documented mechanism that can relocate 
proteins (4), regulates the movement of pro-
apoptotic BAD from cytosol to mitochondria 
(5) and the movement of Forkhead transcrip­
tion factor (FKHRL1) from cytosol to nucle­
us (6). In Caenorhabditis elegans, the pro-
apoptotic molecule Egl-1 releases Ced-4 
from mitochondria, which then travels to nu­
clear membranes (7). Site-specific cleavage 
of several hundred death substrates by dedi­
cated proteases, called caspases, is a critical 
step in the execution phase of apoptosis (8). 
For example, cleavage of the chaperone ICAD 
releases its partner CAD (caspase-activated 
deoxyribonuclease), which translocates to the 
nucleus to degrade DNA (9, 10). Other 
caspase substrates include DNA repair en­
zymes, structural components of the cy-
toskeleton or nuclear scaffold, and BCL-2 
family proteins that affect mitochondrial dys-
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function (8, 11-14). This includes the pro-
apoptotic molecule BID, a member of the 
"BH3 domain only" subset that links proxi­
mal signals from death receptors to the com­
mon apoptotic pathway (11-13). Engagement 
of the receptor Fas (CD95) or of tumor ne­
crosis factor receptor 1 (TNFR1) activates 
caspase 8, which cleaves the inactive cytoso-
lic form of BID (p22), generating a truncated 
15-kd fragment (tBID) (11-13) that relocates 
to mitochondria within 1 hour. The exposed 
BH3 domain of tBID (15, 16) binds and 
oligomerizes BAK, a resident mitochondrial 
family member with multiple BH domains, 
resulting in mitochondrial dysfunction, in­
cluding the release of cytochrome c (17). How 
BID rapidly and selectively targets the mito­
chondrial outer membrane remains unresolved. 

Multidimensional nuclear magnetic reso­
nance analysis indicated that uncleaved and 
cleaved BID have approximately the same 
conformation in solution, suggesting that the 
p7 and pi5 fragments remain in a noncova-
lent complex after cleavage by caspase 8 
(15). Consequently, we explored the mecha­
nism by which this complex translocated to 
and inserted into the mitochondrial mem­
brane. We confirmed that the pi5 tBID frag­
ment was not released when recombinant 
full-length p22 was cleaved by caspase 8. 
When NH2-terminal histidine-tagged p7 (his-
p7) was released from a nickel agarose col­
umn by imidazole, the pi5 tBID fragment 
always coeluted (Fig. 1A, lane 1), suggesting 
a tight noncovalent complex. The solution 
structure of p22 BID suggests that a hydro­
phobic interaction between a l and a3 helices 
may be responsible (15, 16). In support of 
this idea, pi5 was only dissociated from his-
p7 when the nonionic detergent «-octyl glu-
coside reached its critical micelle concentra­
tion (0.6% w/v), indicating a strong hydro­
phobic interaction (Fig. 1A) (15, 18). We 

www.sciencemag.org SCIENCE VOL 290 1 DECEMBER 2000 1761 

http://www.sciencemag.org/
mailto:stanley_korsmeyer@dfci.harvard.edu
http://www.sciencemag.org

