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Cytochrome oxidase activates and reduces 0, t o  water t o  sustain respiration 
and uses the energy released t o  drive proton translocation and adenosine 
5'-triphosphate synthesis. A key intermediate in this process, P, Lies at the 
junction of the 0,-reducing and proton-pumping functions. We used radioac- 
tive iodide labeling followed by peptide mapping t o  gain insight into the 
structure of P. We show that the cross-linked histidine 240-tyrosine 244 
( H ~ S ~ ~ O - T ~ ~ ' ~ ~ )species is redox active in P formation, which establishes its 
structure as Fe'V=O/Cu,Zf-HZ40-Y244.. Thus, energy transfer from 0, t o  the 
protein moiety is used as a strategy t o  avoid toxic intermediates and t o  control 
energy utilization in  subsequent proton-pumping events. 
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cies) (21, each of which conserves appre-
ciable energy in the chemiosmotic gradlent 
(31, although the details are controversial 
(4-7). 

Spectroscopic analysis shows that P is a 
bond-cleaved FeIV=O species (1. 2). Neither 
heme iron nor oxygen changes its oxidation 
state upon the P-F transition (8) .however. 
which poses the question as to the location of 
the extra oxidizing equivalent in P. Forma-
tion of a long-lived (>10 ks)  heme 7-cation 
radical can be ruled out ( I ,  2). Recent obser- 
vations of a covalent cross-link between the 
Cu, ligand. HZ4', and Y244 in the vicinity of 
heme a, (Fig. 1) (9 ,  10) suggested immedi- 
ately the location of this oxidizing equivalent 
and provided a rationale for the lack of de- 
finitive electron paramagnetic resonance rad- 
ical signatures in P as arising from exchange 
coupling between YZ4' and Cu, (11). How- 
ever. the experimental observations can also 
be explained by formation of Cu,"' or by 
magnetic interactions between Cu, and heme 
a,. if the radical is located elsewhere. The 
development of protein radicals in a small 
fraction of P species under some conditions 
has been reported (12-1 7 ) .but the identity of 
these species and their catalytic relevance is 
unclear. 

Because spectroscopic techniques ap-

Respiration activates and reduces 95% of 
the 0, that we consume. In this process, the 
terminal respiratory enzyme, cytochrome 
oxidase, couples exergonic dioxygen re-
duction to endergonic proton translocation 
to drive adenosine 5'-triphosphate synthe- 
sis. There is now a relatively good under- 
standing of the cytochrome oxidase reac- 
tion cycle ( I )  in which 0, binds and is 
eventually reduced to water (Fig. 1). How- 
ever, the structure of a key intermediate. P, 
which lies at the intersection of the 0, 
reduction phase and the proton transloca- 
tion function, has not been determined. The 
major uncertainty pertains to the location of 

'Department o f  Chemistry and 'Department o f  Bio- 
chemistry, Michigan State University, East Lansing, MI  
48824, USA. 

'To w h o m  correspondence should be addressed. E-
mail: babcock@cem.msu.edu 

one of its strongly oxidizing equivalents, 
the reduction of which drives the initial 
events in proton pumping. Reduction of P 
involves at least two proton-controlled, 
one-electron reduction steps. P-F (ferry1 
0x0 species) and F-0  (ferric hydroxo spe- 

~ 2 4 0  	 ~ 2 4 0  ~ 2 4 0  

\ yn44 / \y244 /' \y;:4v
Cul+ Cul+ Cu2+ /./ 2.2V 	 / 

H0 	 HO [HO-l 0 
0 21.A-.& 

reduced OXY P 

Fig. 1. Oxygen reduction and formation of P in the oxidative phase of the cytochrome oxidase10, 
cycle. Only heme a, and the redox-active Cu,-ligated Y244-H'40 cross-linked structure are shown. 
See ( 7 7 ,  33, 34) for details. 
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pear unlikely to provide an unambiguous P 
structure, chemical modification with a rad- 
ical-sensitive agent, I-, has been adopted 
as a probe for the presence of a radical in P. 
Iodide has been shown to label tyrosine 
radicals, but not neutral tyrosines, co- 
valently (18). Samples of P (19) were la- 
beled with 1251- (20), subjected to peptide 
mapping analysis (21), and compared with 
those of various control samples (Fig. 2). 
Although the absolute amount of incorpo- 
rated lZ5I- is small, the observed degree of 
labeling is consistent with expectations 
(22). Radioactivity profiles of the resting 
enzyme iodinated under identical conditions 
were used as controls for nonspecific labeling 
by 1,- or HOI, which are generated in acidic 
solution and react with all tyrosines. By using 
reversed-phase high-performance liquid chro- 
matography (HPLC), we separated the large 
subunits (I to 111) and hemes of '251- labeled 
cytochrome c oxidase from minor subunits (IV 
to XIII) and residual free iodide (Fig. 2A). Two 
fractions, the heme and the binuclear center- 
containing subunit I, exhibited substantial in- 
creases in radioactive labeling in P. Some in- 
crease was observed in the minor-subunits frac- 
tion, but subsequent separation showed that 
most of the radioactivity was eluted in the 
injection volume. The heme fraction was fir- 
ther analyzed to identify peptides or their frag- 
ments that may be labeled in P, but no such 
peptides were found; radioactivity profiles fol- 
lowed closely the absorption of the heme. We 
conclude from these observations that only the 
heme and subunit I are covalently labeled by 
12sI- in P. 

To identify the particular residue@) la- 
beled by iodide in P, we subjected subunit I 
to proteolysis by CNBr and separated the 
resulting peptides by HPLC (21) (Fig. 2B). 
Only one peptide, CB16 (LZo9. . .M2s3), 
which contains the H240-Y244 cross-linked 
pair, showed a strong increase in radioactiv- 
ity between P and the oxidized enzyme (23). 
A group of large and hydrophobic peptides 
eluted at later times and exhibited low levels 
of dispersed labeling. These larger peptides 
include CB 15,16, and probably other partial- 
ly hydrolyzed species that contain the CB 16 
fragment (24). 

CB16 has two Tyr, one Trp, and several 
Phe residues. It was further cleaved at D- 
PZz2 and D-PZ2' by mild acid hydrolysis in 
75% formic acid (25). Only one of three 
resulting peptides, CB16Hdr, selectively 
retained the radioactive label (Fig. 2C) 
(23). This shorter fragment was used for 
amino acid sequence analysis (Fig. 3). A 
substantial increase in the radioactivity of 
the eluate derived from P was observed at 
the 17th cycle, which corresponds to elu- 
tion of the H240-Y244 cross-linked dimer 
(25). No change in radioactivity was ob- 
served in the cycles corresponding to Y23' 

and W236. We conclude that the only pro- by halide (26-28). Enzyme-bound (E- 
tein site labeled in P is the H240-Y244 cross- OX-) or free (HOX; X=Cl, Br, I) species 
linked dimer. generated in- this process are most likely 

In the case of peroxidases, halogenation involved in tyrosine labeling (27, 29). If 
of tyrosine involves the two-electron reduc- such a reaction were to take place in P, HOI 
tion of the ferryloxo porphyrin IT-cation would react not only with tyrosyl radicals, 
radical species ([Por-]FeIV=O, compound I) as I- does, but nonspecifically with any 

o 10 20 30 40 
HPLC retention (min) 

Fig. 2. Peptide mapping of 
the site labeled with 12'1- 

in the P species of cyto- 
chrome oxidase. (A) Sep- 
aration of subunit I (Sbl) 
and the heme (H) from 
minor subunits. (B) Sepa- 
ration of CNBr peptides 
derived from subunit I. 
(C) Mild acid hydrolysis of 
CB16. A small amount of 
unhydrolyzed CB16 is 
seen as a shoulder after 
elution of CB16Hdr (23). 
Brackets below the time 
axis indicate fractions 
used in the subsequent 
step. 
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Fig. 3. Radioactivity profile 
along the amino acid se- 

I 
quence of CB16Hdr de- 
rived from iodinated P. 
Data are shown as the dif- 
ference from the preced- 
ing cycle, except for the 
first residue, for which ab- 
solute activity is shown. 
The dotted arrow indicates 
the sequence observed for 
the native peptide. The lo- 

0-1---1---1-1-11-1 1 cation of the H240-Y2" 
cross-linked structure is 
shown by the bracket (25). 
Abbreviations for the ami- 

W N W 3 no acid residues are as fol- 
lows: E, Clu; F, Phe; C, Cly; - p'l',';dH';F'~;FIGIH1pl;V1;I1~ I L P  H,Hirl,Ile;LLeu;P,Pro; 
Q, Cln; V, Val; W, Trp; and 

residue Y, Tyr. 
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tvrosine in the vicinity of the binuclear 
;enter (27). On the other hand, labeling of 
the heme and subunit I may represent sep- 
arate instances of the soecific reaction be- 
tween iodide and strong, one-electron oxi- 
dizing species (18). To distinguish these 
possibilities, we carried out iodination of F, 
which contains no radical (8). We found 
that F exhibited heme labeling comparable 
to that of P, whereas iodination of the heme 
in the resting enzyme was substantially 
less. This ratio was reversed in the H240- 
y2JJ region, where P was specifically la- 

beled, but F showed no specific labeling in 
the resting enzyme ( 30 ) .  

The differences in iodination of the heme 
and the protein observed for P and F indi-
cate that the increase in labeling of 
the H240-y244 structure in is due direct 
reaction between iodide and the radical. It 
is with the low reactivity of the 

form peroxidases 
pound 1 ([Por]Fel"=O R.) toward two-elec- 
tron of iodide (28, 31). The spe- 
cific labeling of both the heme and H21"-
y241in P and of the heme only in F also 
argues against involvement of a diffusible 
iodinating species through a peroxidase-
like mechanism. The possibility of apparent 
labeling of P as a result of contamination 
with F" another species at the same oxida-
tion level as P. but spectrally identical to F. 
has been excluded based on the com~arison 
of optical spectra and iodination pattern of 
the P and F' species (32).  

The H2J0-Y2JJ cross-linked structure is 
the only protein site in cytochrome oxidase 
that is specifically labeled by ' 2 S I  in P. 
This result indicates that the unusual dimer 
is redox active during 0, reduction. Thus, 
P exists as a heme a, ferryloxo adduct with 
the Cu,-ligated. H240-Y244 cross-linked 
structure oxidized to a radical state (Fig. 1). 
It provides solid support for the mechanism 
of dioxygen activation by active-site hydro- 
sen-atom abstraction (11).although the de- ~,Yails of this most 

modification (33. 34 ) .  In a broader sense, 
our results highlight the emerging general 
strategy of both heme and nonheme oxy- 
gen-metabolizing enzymes (1). Oxygen is 
rapidly reduced to water in a single Step, 
with the oxidizing generated 
transferred to the enzyme itself for further 
processing. This general Strategy is flexible 
and efficient. Partially reduced, toxic oxy- 
gen species are avoided, and enzyme con-
trol over high-energy, but protein-local-
ized, intermediates is facilitated. As for 
cytochrome oxidase' the defini-
tion of P provides the basis for analysis of 
subsequent events that d r~ve  the proton 
pumping function of the enzyme, The mech- 

basis for the cross-1ink may 
be to enforce rigidity to ensure efficient pro- 
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ton-coupled electron transfer to substrate, as 
calculations (35) and experiments (36) show 
no appreciable change in the thermodynamic 
~ r o ~ e r t i e s. . of the tvrosine induced bv the link- 
age to the histidine. 
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Control of SIV Rebound 

Through Structured Treatment 


Interruptions During Early 

Infection 
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In a randomized controlled tr ial  with acute simian immunodeficiency virus 
(SIV)-infected macaques, both highly active antiretroviral therapy (HAART) 
and HAART with fixed-schedule structured treatment interruption (STI-HAART; 
alternating 3 weeks on and 3 weeks off therapy) suppressed viral load. In the 
STI-HAART group, T cell virus-specific immune response (VIR) and control of 
viral rebound increased concurrently during subsequent interruptions. In con- 
trast, VIR did not  increase and SIV rebounded after permanent treatment 
withdrawal in all animals on continuous HAART. Fixed-schedule STI-HAART 
appears t o  be an effective alternative t o  continuous HAART for the early 
treatment of retroviral infection. 

The introduction of HAART represented a 
milestone in the treatment of HIV infection, 
and has been associated with a 70 to 80% 
decline in mortality among AIDS patients. 
However, virus suppression by HAART is 
not associated with the appearance of HIV- 
specific immune responses, and withdrawal 
of HAART is usually followed by a rapid 
increase in the number of viral particles in 
the blood, or viral rebound, and loss of CD4 
T lymphocytes (1-4). Further, the long- 
term use of HAART is prohibitively expen- 
sive for many patients, and has been asso- 
ciated with toxicity and adherence prob- 
lems ( 5 ) .  

STI-HAART, involving repetitive on-
and-off cycles of HAART, is an attractive 
alternative to continuous treatment (6), be- 
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cause it might be used to enhance the utility 
of HAART. The initial excitement began 
with the description of the Berlin patient, 
who was able to control HIV after cycling on 
and off therapy twice (7).  There is some 
evidence that STI-HAART can be used short- 
ly after infection to induce immune control of 
viral replication (6-9), or during established 
infection (10) to reduce drug-related toxicity 
or to favor the reappearance of the wild-type 
virus ( I  I ) .  However, no well-controlled study 
has yet demonstrated a clear advantage of 
STI-HAART over HAART. Two potential 
strategies might be followed with STI-
HAART: cycle HAART according to a fixed 
schedule or resume drug treatment after the 
virus reappears in the plasma. We evaluated a 
fixed-schedule STI-HAART, because it can 
be translated into a simple method of manag- 
ing patients. We selected a symmetrical 
schedule, with 3 weeks on, then 3 weeks off 

treatment' 
We chose to use infection of rhesus 

macaques by simian immunodeficiency vi- 
rus (SIVmac251) as a model to compare 
continuous HAART with a fixed-schedule 
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STI-HAART, because the course of that 
disease is analogous to that of HIV infec- 
tion in humans. Seventeen rhesus macaques 
were infected via mucosal (intrarectal) in- 
oculation with SIVmac25 1. All animals had 
seroconverted before treatment was initiat- 
ed (6 weeks after challenge). The animals 
were randomized into three groups. One 
group (five animals) served as an untreated 
control. The other two groups, (six animals 
each) were treated for 21 weeks. One of 
these groups, ("continuous HAART"), was 
treated with (R)-9-(2-phosphonylmetho-
xypropyl) adenine (PMPA) (12) (20 mglkg 
body weight, once daily subcutaneously), 
didanosine (ddI) (10 mglkg, once daily in- 
travenously), and hydroxyurea (HU) (13- 
15) (15 mglkg, once daily intravenously). 
The other group ("STI-HAART") was 
treated with the same drugs according to a 
fixed schedule consisting of 3 weeks on and 
3 weeks off therapy. 

Plasma viremia in all three groups had 
reached a plateau, with an average of 
200,000 to 300,000 copieslml before treat- 
ment was started. As expected, viremia 
continued to increase in the untreated ani- 
mals (Fig. 1). All 12 treated animals re- 
sponded to therapy with a rapid decrease in 
plasma viremia. In the continuous HAART 
group, viremia became undetectable in all 
animals by 8 weeks of therapy. In the STI- 
HAART group, viremia became undetect- 
able in four of six (416) animals at week 8 
(during the second cycle of treatment) and 
in 616 animals at weeks 14 and 20 (during 
the third and fourth cycle of treatment, 
respectively). In both groups, viremia was 
significantly lower than their baseline val- 
ues ( P  < 0.05) (16) and also significantly 
lower ( P  < 0.01) than that in the untreated 
group at all times during therapy. From 
week 14 of therapy until permanent with- 
drawal of treatment, the viremia level of the 
STI-HAART group was not significantly 
different from that of the continuous 
HAART group ( P  = 0.8, 0.2, and 0.8, at 
weeks 14, 17, and 20, respectively). In the 
STI-HAART group, the rate of plasma viral 
load rebound during the first interruption 
was 0.17 loglday, a statistically significant 
figure ( P  < 0.05), comparable to the rate of 
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